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Nonlinear elasticity of an a-helical polypeptide
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We study a minimal extension of the wormlike chain model to describe polypeptides haviegjcal
secondary structure. In this model the presence or absence of secondary structure enters as a scalar variable that
controls the local chain bending modulus. Using this model we compute the extensional compliance of an
a-helix under tensile stress, the bending compliance of the molecule under externally imposed torques, and the
nonlinear interaction of such torques and forces on the molecule. We find that, due to coupling of the “internal”
secondary structure variables to the conformational degrees of freedom of the polymer, the molecule has a
highly nonlinear response to applied stress and force couples. In particular we demonstrate a sharp lengthening
transition under applied force and a buckling transition under applied torque. Finally, we speculate that the
inherent bistability of the molecule may underlie protein conformational changio.
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[. INTRODUCTION interpretation of these protein manipulation experiments it
) . o appears to be useful to first understand in more detail the
The study of the mechanical properties of individual mechanical properties of simpler polypeptide-based struc-
biopolymers serves as an important laboratory to probe polytures. A natural candidate for such a simpler structure is a
mer physics at the length scale of a single chain and furthesrotein subdomain of one secondary structure. Here too there
elucidates the biological processes in which these moleculds experimental input: single-molecule force spectroscopy
take part[1,2]. For example, the biologically fundamental via atomic force microscopyAFM) has been used to di-
processes of DNA replication, transcription, and the regularectly probea-helical polypeptide$22] as well as synthetic
tion of transcription rely on the DNA protein interactions polymer chains with a local helical structure such as PEG
involving the mechanical deformation and microstructural[23].
modification of DNA both at long length scales and at the In order to understand the mechanical properties of pro-
scale of individual base pairs. Recent advances in the experi€ins in general and-helical polypeptides in particular it is
mental manipulation of individual biological macromol- hecessary to develop a minimalistic model that incorporates
ecules has opened a new window on these processes af@th the conformational fluctuations of the polymer back-
allows for the direct quantitative test of our understanding of?on€ and localized structural transitions of the constituent
the mechanical properties of these macromolecules in thefoNeMers. In other words it is necessary to augment simple
mal equilibrium. These single-molecule manipulation experi-m_Odels of the statistical mechanics of the peptide backbone
ments have probed the mechanical properties of not °”'%gﬁéetrr?elsctr?a?rfcgﬂEtr]grﬁgfepﬁergﬁestogffﬁgf?r% ?:][{:?;lére
E)Tn% ECU%EL:;SE‘;r?gvscr):sgéglr?;:?d?;?g;ngri;rltp':ﬁc tion betwgen the degree of local secondary structure and the
teins such as fitifi11-13 and tenascifil]. The better the- conformational degrees of freedom of the polypetide back

; . . : . one.
_oretlcal un_derstandlng of protein mechanics W|I_I enhance the In this paper we examine the predicted mechanical prop-
interpretation of protein force spectroscopy, which may eve

) ) : EVeNhrties of such a minimalistic model of arhelical polypep-
shed light on protein folding pathwayd5], although this  i4e i which we allow the interaction of the local secondary

latter point appears to .be somewhat qontroverSl@l,lﬂ. structure of the chain with its conformational degrees of free-
Regardless, understanding the mechanical properties of Pr3om. We treat the local presence or absence of secondary

teins is fundamental to elucidating the allosteric or com‘or-Structure as a two-statésing-like) variable along the chain

mation changes that many proteins undergo as part of they, .\ one  which is itself described by a set of local tangent

biological activity[18-21). . vectors to the chain. In order to make this simplification, we
These last examples demonstrate the feasibility of the di-

i hanical ulati ¢ sinal o o coarse-grain the polymer so that each independent monomer
rect mechanical manipuiation ot single proteins. HOWevery,, pe unambiguously assigned a state of secondary struc-
modeling the mechanical properties of these atypically larg

tol for that matt " tein | daunt fure. This requires us to consider a model comprised of
proteins or, tor that matter, any entireé protein 1S a dauntint, 5 5e_grained chain segmertit®., monomers each con-

task since such molecules have complgx structures that res'élitsting of about three amino acids. The interaction between

from a numper of local and nonlocal Interactions along thethe internal, secondary structure variables and the conforma-
polymer chain. In order to make quantitative progress in thgjq, of the polymer chain as described by the set of backbone
tangent vectors is effected by the presence of a bending

modulus of the backbone whose value depends on the local

*Electronic address: buddho@physics.umass.edu state of secondary structure. When these three amino acids
"Electronic address: levine@physics.umass.edu making up one model monomer adopt a local configuration
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consistent witha-helical secondary structure, the hydrogencombination of the wormlike chain and the helix-coil model.
bonding between these amino aci®f] renders that seg- Using this model we calculate the response of the chain to
ment of the chain significantly stiffer than the same polymetbending torques in Sec. Il A. We then take up the problem
without the locally ordered secondary structure. Thus thef the extensional compliance of thehelix in Sec. Il B
bending energy associated with the local change in the backefore summarizing the results and discussing possible ex-
bone tangent vectors is higher in regions havingelical  perimental tests of the theory in Sec. IV.

structure than in regions locally adopting a random coil con-
figuration. Similar models can and have been applied to
study the mechanical properties of DNA and have been dis-

cussed in the current context as welb-27. The wormlike chain(WLC) [33,34 is the fundamental

To qualitatively characterize our results presented belowcoarse-grained model for a polymer at length scales shorter

Wbel note that, dtge to the %resentce (t)f the Imterr:ﬁl-stzri]te_ Valihan its thermal persistence length. This model describes the
avles representing secondary structure along the chan ar gle-chain polymer statistics in terms of a quadratic Hamil-

their control over the local chain bending modulus, the__ : . . .
a-helix is predicted to have a highly nonlinear response toltotr: '(?;ug;gt aassboecrEEﬁS ?:ozrtljleljgyIﬁo'csetrvrr\?;ho(;hj‘lgiggrre\l'u?zuejzje by
both bending torques and to extensional forces. Under smalf 9 9 '

externally applied torques, the molecule will deform so thatChai[] mi)del described_by the set of monomeric tar_‘ge’_“ vec-
its thermally averaged chain contour takes the form of the arérs i, i=0,... N=1, with N the degree of polymerization,

of a circle and the torque necessary for bending the molecul®® WLC Hamiltonian may be written as

II. HELIX-COIL WORMLIKE CHAIN

through a given angle grows linearly with that angle. The N-1
molecule deforms roughly as a flexible rod. At a critical Hwie =& [1 - Tl (1)
torque, however, the secondary structure of the molecule is i=0

locally disrupted, producing a small length of the backbon
with a much softer bending modulus. The total curvature that "™ ) . . .
had been uniformly distributed along the backbone become\é’elght of straight chain configurations on a length scale of

localized in the anomalously soft region produced by thdnonomers equal to the thermal persistence length. Here and

disruption of the secondary structure and the torque re .reg]roughout this_ paper we takesT=1. It may be easily
ISTUPH y stuetu que requl hecked that this length is equal to the arc lengtieasured

to enforce the curvature of the molecule drops precipitouslyf: . :
The long-range goals of this sort of modeling go beyond'n monomer lengthy) of the polymer chain over which the

the interpretation of the emerging experiments on the mechain tangent vectors thermally decorrelate. At length scales

chanical properties of polypeptides haviaghelical second- mth longer thanxy the .effect OT th's bending energy is
ary structure. By understanding the mechanical properties dpmlmal and the equilibrium statistics .Of the pplyme_r _be—
the constituent elements of a protein it should be possible tGOMes qontrollgd by.a combination Of. intrachain co!I|S|ons
develop a lower-dimensional representation of protein mef’lnd chain configurational entr_o;ﬁsl—'?] with a renormallzed
chanics. In place of the atomic coordinates of the backbongUhn !ength. ]ne solvent.one finds n the limit O.f very long
carbons and the positions of the various amino acid residue@form“ke chains _the radius of 9¥fa“°” to be given @@
one may describe protein domaifieving definite secondary =2ky'N wherey is the monomeric length. , _
structure as a space curve having some nonlinear exten- The single-chain response to externally_apphed tenBion
sional and bending compliances that may be computed ihas a_lso been exhaustively researched within the WLC de-
terms of a few energy scales determined either from expericription of the polymef36-38. The fundamental resuit of
ment or simulation. Using three-dimensional protein struc-his work is that one may determine the extensional compli-
tural data and such a nonlinear elastic model for each stru@nce of the molecule as a function of applied force. This
tural element of definite secondary structure, one can attemgeMpliance is defined a&lL)/JF, the derivative of the equi-
to build mechanical models of entire proteins that, due tdibrium chain length{L) with respect to the applied forde
their highly reduced number of degrees of freedom, are morét low forces it is essentially constant reflecting the stan-
tractable for numerical investigation than those based on aflard, quadratic reduction in chain configurational entropy as-
atom simulations. sociated with long, flexible polymers. At high forces, how-
From the study of those models one may be able to exever, the compliance goes to zeroras? due to the fact that
tract low-energy conformational pathways and thus makéhe chain has a finite length at even arbitrarily high forces.
predictions regarding protein allostery. For example, from al'he characteristic form of the approach of the compliance to
combination of native-state protein structural data and th&ero in the high-force limit is controlled by the pulling out of
calculated nonlinear elastic properties @fhelical protein  small, transverse thermal fluctuations of the chain and
domains it may thus be possible to predict the mechanicghereby recovering the arc length stored in them to increase
properties of thea-helical coiled coil region in myosin Il (L)
[28] or a-helix-rich proteins such as spectrin as probed by While the WLC is a highly successful model to describe
mechanical unfolding experimenf29,30. Further data on the force extension properties of a number of biopolymers
protein conformational change are available from numericabuch as DNA, it is clear that it is not sufficient to properly
simulations[31,32. describe these molecules under large enough tensions. At
The remainder of the paper is organized as follows. Inarger tensile stresses, details of the internal structure of the
Sec. Il we introduce ther-helix Hamiltonian based on a molecule become important for the understanding of confor-

he effect of this bending energy is to enhance the statistical
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mational properties of the molecule. For example, under
large enough stresses the double-helix structure of DNA
(B-DNA) can be unwound allowing each monomer to
lengthen by a factor of about 1.8§39]. To account for such
(two-state internal degrees of freedom along the chain,
workers have employed the helix-céilC) model[40]. This
model has been used to study a class of protein conforma-
tional transitiond 41,47 in solution and under tensidd3].

The HC model Hamiltonian, which is used to model these
structural transitions, can be reduced to its simplest formby @-7 @ @ O\ .\ 3.\ oL 00—
assuming that the local structure of the chain can be de-
scribed by a set of two-state variablgs 1, i=0, ... N. FIG. 1. Schematic figure of am-helical polypeptide and its
For the a-helical chains of current interest we regard theseschematic representation in terms of the Ising-like secondary struc-
two states as the local conformation of the monomer in itsyre variablegopen circles for random coil segments and solid ones
native, a-helical state(s=+1) and in a disordered, random for a-helical one$ and the tangent vectors to the segments of the
coil state(s=-1). The statistics of this set of two-state vari- chain(denoted by arrows
able is controlled by the Hamiltonian

N-1 h N The coupling of the secondary structure variables to the

€ . . ; .
Hy.= W 1-55,1) -~ -1). 2 WLC tangent vectors is affected by introducing a bending
HC™ 2 % (1 -SS) 2% (5-1) @ stiffness in the WLC Hamiltonian that depends on the local

degree of secondary structure. We choose

It is immediately clear that above Hamiltonian also describes
a one-dimensional, ferromagnetic Ising chain. The interpre- © {K> if s= +1, @
k(s) = 3

tation here is somewhat different. The enefgplaying the
role of an external magnetic field in the Ising system now

represents the free energy cost per monomer to be in thgye 1o the hydrogen bonding between turns of dheelix, it
non-native(i.e., random-cojl state. This term is thus con- s reasonable to expect that, the bending modulus in the
trol!ed by a combination qf thg chemlstry of the monomeric,4tive state, is significantly larger thag., the bending
residues and solvent quality; its calculation from fundamensy,odulus of the chain in the non-native, disordered state. We
tal solution chemistry is beyond the scope of the currénieyymn to the question of determining physically reasonable
work. However, we will attempt to estimate its magnitude estimates of these quantities in the conclusions. By introduc-
ba;ed on experiment. .Clearly thls constant is at Iegst qf ordqﬁg Eq. (3) and combining the Hamiltonians in Eq4) and

unity since the protein domain under investigation is as{2) ye write the full Hamiltonian for the coupled system of
sumed to have am-helical secondary structure in thermal secondary structure variables and chain tangent vectors as

ko ifs=-1.

equilibrium. _ the helix-coil wormlike chain HamiltoniatHCWLC):
The first term in Eq.(2) plays the role of the nearest-

neighbor ferromagnetic coupling in the Ising interpretation N-1 ho

of the Hamiltonian. In its current interpretation,, is free H= S (1-s5.)- -2 (s - 1)

energy cost of a domain wall in the sequence of hédix 2% 2i0

+1) and random-coi(s=-1) sites. In the helix-coil literature N-1
it is also referred to as the natural logarithm of the “chain- + 2 k(s)[1 - -] (4)
cooperativity” parameter. By adopting a native-state configu- i=0
ration, a monomer presents hydrogen bonding sites to its
neighbors. If those neighbors are also in their native staté/Ve note that the system described by Etj.may be looked
these hydrogen bonds further lower the free energy of that as two intercalated Heisenbdfg and Ising(s) magnetic
system via this nearest-neighbor cooperative effect. If, howsystems. The nearest-neighbor coupling of the Heisenberg
ever, one of the neighboring monomers of arhelical (chain tangentvector, however, depends on the value of the
monomer is in its random-coil state, such hydrogen bondindsing (secondary structujevariable between them. A picto-
is not possible and the total free energy of this domain walkial representation of the system along these lines is shown in
configuration is larger than simply the free energy cost forFig. 1. The full Hamiltonian given by Eq4) has four con-
one monomer being in the non-native configuration, stants with dimensions of energy.. , - ,h, €,, which can be
Finally, we note that since there are multiple hydrogenfit from experiment. We return to this point in our conclu-
bonds per turn of the-helix, it might be reasonable to de- sions. Finally, we note that we have disregarded the twist
scribe the local secondary structure bg-atate discrete vari- degree of freedom of the molecule. Such twist degrees of
able whereq>2. Such an analysis changes E®). into an  freedom and the coupling of twisting and stretching modes
equally tractable one-dimensiongistate Potts model, but of these chiral molecules have been explored particularly
introduces additional unknown parameters. It is thus inconwith regard to the mechanical properties of DNi#4,45].
sistent with our goal of exploring a minimal model that in- This extension of the basic model will be explored in future
corporates secondary structure. work.
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IIl. MECHANICAL PROPERTIES Z(p) = E 775N<SOv 0= O|TN|SN, o= 1), (6)

We now turn to the exploration of the mechanical proper- SosvTEL
ties of the polymer described by the HCWLC Hamiltonian. whereT is the single-step imaginary-time evolution operator
We study this problem in different ways. First, we considergnd 775=e_h5s,-1 is a factor needed to correct the statistical
the response of the molecule to externally applied torques byjeight of finding the last chain monomer in the disordered,

examining the torque required in thermal equilibrium to en-non-native state. The remaining sum is over the starting and
force a given angular deviation between the first and lasgnding secondary structures of the chain.

chain tangent vectors. Second, we study the force-extension To make progress it is useful to work in terms of the

relations for this molecule by calculating the projection of integral angular momentum variables conjugate to the
the chains’'s mean end-to-end distance along the direction @fnglesé. In this angular momentum representation of the

an applied force as a function of the magnitude of that forceproblem we may expand the angle eigenstates as
We study this extensional compliance for two different cases.

In one case we assume that the end tangents of the chain
remain unconstrained. In the second, we explore the effect of
applied torque on the extensional compliance of the mol-
ecule by first constraining the end tangents vectors and theln this momentum representation the time evolution operator
applying an extensional force. All these calculations are conis diagonal; i.e., it connects states of the samenly:

ceivable as individual, single-molecule experiments through i ek

the use of, e.g., optical and magnetic traps. By understanding (meTIm's’y = § ( el k] ew >|m[K>]>

the dependence of the extensional compliance on the curva- ™M g '

%)

s0)=l9e — 3 e™m). @)
V2

T m=—%

eew_h_K<|m[K<] e_h_K<|m[K<]
ture of the molecule, one may gain insight into the mechani- 8)
cal properties okx-helical domains of proteins that are simi-
larly constrained in the protein’s native state. To obtain the above result we have used an identity relating
the exponentiated cosine to a sum of modified Bessel func-
A. Bending tions of integer ordef47]:

To consider the bending response of the chain to applied cox® * -
torques in thermal equilibrium we first express the restricted e’ = 2 I(Q)em. 9
partition function of the system subject to the constraint that ==

the chain tangent deflects by a fixed anglever its total arc  The action of the transfer matrix or imaginary-time evolution
length. It is reasonable to suppose that the chain bends in thgyerator can be further simplified by diagonalizing it in the
plane defined by the first and last chain tangents that armaining 2x 2 subspace of secondary structure.
being constrained; to simplify the calculation, we assume Qne may note that the above matfigq. (8)] is non-
that we may examine the problem in this two-dimensionaljermitian, reflecting the lack of time-reversal symmetry of
subspace. In that case the chain tangents are each equivalgié underlying Hamiltonian. This absence of time-reversal
to single anglef;.;-ti—cog6.,,- ), and we write the re- symmetry occurs because the local bending modulus be-
stricted partition function as tween theith and(i +1)th chain tangents depends only §n
N N the secondary structure variable to tight of the first tan-
- . oH _ gent vector. The absence of microscopic left-right symmetry
2 g Sj:Eﬂ g Aty & 7 0(0) b~ ). ® along the chain results in the non-Hermitian character of Eq.
) ) _ .. (8). Minor modifications of Eq.(4) generate Hermitian
where thes functions enforce the constraints on the initial 4amiltonians expressing the same physics at length scales
and final chain tangents. The Hamiltonian appearing above i%rger than the monomer size, but we do not pursue such
given by Eq.(4) and is a function of all the secondary struc- g|ated problems here.
ture variables and backbone tangents. The transfer matrix, Eq(8), can be diagonalized in the
To evaluate the partition function it is useful to observe‘,;,paCe of secondary structure by a similarity transform using

the formal equivalence of Eq5) to the imaginary time  the matrixU(m) (defined in Appendix A the eigenvalues of
propagator of a quantum particle on the unit cifel€]. The the transfer matrix are

partition function above is an imaginary-time sliced path in-
tegral representation of the transition amplitude for the par-
ticle to start at anglé,=0 and end at angléy=¢ in N time
slices. The imaginary-time evolution operator is simply the
exponentiated Hamiltonian appearing in Eg). The quan- Where oy (k) =exp-«x)l(«) is the transfer matrix element
tum analogy is somewhat complicated by the presence of thi@r an ordinary WLC and,,=e"wy(k<)/ wy(k-) is the ratio
secondary structure variables; for the current problem, thef the fugacities of a random-coil segment andcahelical
fictitious quantum particle has a two-level “internal” variable segment for a given angular momentum The quantity3
similar to the spin states of a spin-1/2 particle. The state ofppearing in the above expression is the exponentiated free
this particle in the angle representation takes the f(sy) energy cost of introducing a domain wall in the secondary
and Eq.(5) can be recast in the form structure, helix-coil variableg=exdIn(2) - ¢, ] with the first

wm(K-)

5 (142 V(1 =22+ B2y, (10)

Npo(m) =
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and second terms arising from, respectively, the entropic gain 12 ' ' PP '
and enthalpic cost of the creation of a domain wall. (@) el kY
It is important to note that the partition function of the 38: ey 2= ' %
chain may not be reduced simply to the product of eigenval- ‘64 | ‘\‘
ues since doing so presupposes periodic boundary condi- I N
tions. While in the thermodynamic limit of long chairfhl 0 . —
— o) it is indeed permissible to choose those nonphysical o 05 1 15y 2 25 3

boundary conditions, if we wish to study the dependence of

on the secondary structure variables since we cannot impose
them on the chain tangents in the bent configuration. Addi- h
tionally, such periodic boundary conditions will substantially L —— 1 15 » 2 25 3

and artificially reduce the statistical weight of the appearance

of random coil(s=-1) segments along the chain. The cause FIG. 2. (a) The torquer(y) required to hold the chain at a fixed

of this artificial reduction is the following. With periodic angle ¢ for €,=1.4 (solid line) and ¢, =5.2 (dashed ling with h
boundary conditions domain walls must appear in pairs=8. In both cases- =100, k.=1, andN=15. (b) The correspond-
while in the physical problem they can appear individuallying number of segments having non-nativandom coil structure

by destroying the native secondary structure from the ends dM(¢). The buckling of thex-helix coincides with the creation of
the chain. Periodic boundary conditions therefore suppresgne random-coil segment that acts as a softer joint along the very
the probability of the creation of random-coil segments byrigid chain.

one extra factoB (<1 in highly cooperative chains

mechanical properties on the degree of polymerization itis T (b) ”~
essential that we avoid this simplification. Internal consis- £ 0.8
tency requires that we not impose such boundary conditions E 04'

The partition function is thus reduced to the remaining 1d1InZ(y)
- M(g)=———". 14
sum given by (¥ N oh (14)
Z= > (slUmDNmUm)|sy s, (11)  Exploiting the symmetrywn (k) =w_n(x) we may collect the
S,Snm | | N terms within the -] in Eq. (12) defining[-]=Z(m, h) to write

the partition function as
where D(m)=U"*m)T(m)U(m) is the diagonalized transfer "
matrix and the remaining sums are over the secondary struc- _
ture of the first and last monomers of the chain as well as a Z(y) = 2(0,h) + 2%1 cogym) Z(m,h) (19
single remaining angular momentum variabieWe evaluate

these final sums ovex, andsy to find so that, using Eq913) and(14) we find
© - 1 _h B ~ i
2= 3 &m = Dm +ANm) 22, msin(ym) Z(m
m=—c () = p (16)
AN(m) ~A(m) 2(0,h) +22 cogym) Z(m,h)
m=1

2V(1 - z)* + B2y

and
X(1+Bzn= 2= €M1~ 2~ ])]- (12 w
B~ Zm Zn = A dZ(0,h) dZ(m,h)
+22 cogym)— —
Using the above partition function we may immediately -1 oh m=1 dh
compute two measurable quantiti¢ig:the mean torque( ) M(y) = N o 1
required to enforce the constraint on the chain tangents at Z(0,h) +2>) coqym) Z(m,h)
either end andii) the fraction of molecule in its non-native m=1

(random-coi] structureM(#). The former can be directly

measured by AFM in single-molecule manipulation experi-The series above are well approximated by partial sums; in

ments while the latter can be probed by circular dichroisn'fl)racnce' taking the first ten terms reduces the error to about

spectroscopy. These quantities can be computed from thenpart in 16. These numerically evaluated partial sums are
partition function shown in Eq(12) by the derivatives shown in Fig. 2. At small values of the bending angte

there is a linear dependence of the constraining torqug.on
The a-helix bends like a flexible, elastic rod. At a certain

o) = (9|n_2(¢) (13) critical angley*, however, the constraining torque reaches a
iy maximum and then drops precipitously for angles ¢* as
shown in part(a) of Fig. 2. This dramatic collapse of the
and chain’s rigidity is akin to the buckling instability of a mac-
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roscopic tube such as a drinking straw. The mode of the The appearance of the buckling transition is the first and
localized failure is, however, completely different. Examin- perhaps most dramatic consequence of the coupling the
ing part(b) of Fig. 2, we see that at=¢*, M abruptly jumps  helix-coil, internal-state variables of the chain to its confor-
to O(1/N). The buckling of thex-helix is due to the creation mational degrees of freedom. The generic consequence of
of a single random-coil segment along the chain that prosuch a coupling is the highly nonlinear bending elasticity of
vides a region of greatly reduced bending stiffness. The sizghe polymer as shown in Fig. 2. We now consider the effects

of the created random-coil section will remain on the ordersecondary structure on the force extension relations of the
of Nk-/«- so for a large difference in bending moduli be- polymer,

tween the native and non-native states of the chain, these

“weak links” generically occupy a small fraction of the poly-

mer. In the above example, there is only one weak link. B. Stretching
The underlying cause of the buckling can be understood

in terms of a comparison of the free energy increase per = . .

monomer associatgd with the creation of n%%-native staﬁ e discuss the radius of gyration of such a pqurﬁ@,é}q.

along the chain due to the reduction in chain bending energ 0 do so we note that th.e Q|St§1nce betweenitheand jth

due to the collapse of chain curvature into the more ﬂeximé\%onomers along the chain is given by

random coil segment. At large enough imposed curvatures

(at ¢*) the reduction of chain bending energy more than A

offsets the free energy cost associated with the creation of a Rj= E_ VSt (19

chain segment having non-native secondary structure and the i

buckling of the a-helix occurs. The mean conformation of

Before we develop the theory of stretching the HCWLC,

-1

hain ch f th ¢ ciréte minimi t where y(s,) is the length of a monomer measured along its
chain changes from the arc of a cir¢te minimize curvature mean chain tangent. Recalling that each monomer of the

energy to two e;sentially straight segments connected b3f-|CWLC represents enough amino acids3) to unambigu-
O(1) monomers in the random-coil state where the exter-

. . I ign ndary str r h ment, the effec-
nally imposed curvature localizes. It should be noted thaOusy assign a secondary structure to the segment, the effec

- ! . [iv ize of the monomer n n that ndary struc-
critical angley* for the buckling of ana-helix depends not e size of the monomer depends on that secondary struc

ture. In the nativea-helix state the monomer is shorter than

only on relative persistence lengths in the native and NOMG, ts generally more extended random-coil configuration. To

native states of the chain, bu_t also on the_ h.eI'X'CO'I ParamMs - count for this aspect of the coarse-grained polymer model
eters. If, for example, the chain cooperativity is decreased b

changinge, = 5.2 1.4 (dashed line to solid line in Fig.)2 We define a monomer length that is a function of the second-

. L .ary str re variablsg, vi
then the free energy cost of creating a weak joint in the chalr? y structure variable, via

is reduced and the buckling transition occurs at smaller im- if s= +1
posed curvatures. One may observe similar effects through Ys) = r< ) ’ (19)
the change irh. v~ ifs=-1,

The buckling transition may be considered as a type of .
nucleation process of random-coil segments along the chai/Nere, as the notation suggests, <y-, the length of a
Using this analogy, we can distinguish three different typedNOnomer, increases when it loses #shelical secondary

of buckling transitions based on the length of the chain andtructure. We return to a discussion of reasonable numerical

the chain cooperativity. For very long chains there is homo€Stimates of these values in the conclusions below.

geneous nucleation in which the random-coil segment first _ _
appears anywhere in the bulk of the chain—i.e., away from 1. Radius of gyration

the chain ends. The creation of a random-coil segment in the \we now compute the radius of gyration of these polymers
bulk of the chain requires the creation of two domain wallsj, go|ution by taking the thermal average RgN using Eq.
whereas the creation of random-coil segments at the end ‘EFLS) and the HCWLC Hamiltonian. Separating the sum into

the chain requires only one. For long enough chains thesms diagonal and off-diagonal in the monomer indices we
added enthalpic cost of the additional domain wall is moregite

than compensated by the translational entropy associated

with the placement of that random-coil segment. For shorter N-1 N-1 n

chains or chains having higher cooperativity, homogeneous (RA =2 (A0 +22 X (v(s)vstn - T (20)
nucleation is replaced by heterogenous nucleation; the n=0 n=0 m=1

random-coil segment appears at one end of the chain. Based

on these considerations, the transition between homogeneoBsth of these terms in the above expression can be evaluated
and heterogeneous nucleation of random-coil segmenis terms of the transfer matrices introduced in E8). We
should occur for chains where M~¢,. Finally, even explore this point in some detail as it gives insight into the
shorter chains or chains with still higher chain cooperativity,bulk of the calculations regarding stretching of the HCWLC.
one can encounter a regime in which the entire chain sporFhe reader who is uninterested in details of the calculation
taneously loses its native secondary structure at a criticatan pick up the discussion involving Fig. 3 in the last two
angle. Such a transition should occur onlyNiK g,/h. The  paragraphs of this section.

curves shown in Fig. 2 correspond the intermediate case of We note that the firstdiagona) term may be written in
heterogeneous nucleation of random-coil segments. terms of the transfer matrices as
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. 7 _
w2 (P(s0)= 3 "2(5,m=0D(O/TD(0)" 5y m=0).
z @ oSN
e 18 (23
1o The remaining sums over the secondary structure of the ini-
5 - - - tial and final chain monomers consist of only four terms and
! 15 2 n 25 3 can be evaluated directly.
1 , , , , . Using the similar reasoning we may write the off-diagonal
s | ] parts of Eq.(20) as
a A~ a
osl (NSNSt - 1))
I 7, . _
=23 —M(s,0/D(0)TD()D(0)" sy, 0),
oL AN o £

0 ' 05 ' T u2 F;:,N 15 2 (24)
FIG. 3. (a) The radius of gyration of the HCWLC as a function Where we have takep>k. We observe that while the initial
of the free energy cost per segment to transform to the random-coifnd final states are fixed at zero angular momeritiamthe
non-native stateh. In this curvex-=100, k-.=1, N=10, ande, ~ S@Me reasons as in E@3)], the diagonalized transition ma-
=10. In the lower figurgb) we plot the scattering functioR(6) trix aCting between thé&th and]th monomers is evaluated at
computed from the radius of gyration. The dashed line correspond@n angular momentum of unity. To understand this we note
to that of a chain that is a mixture of helix and coils for2.1 and  that the thermal average of the scalar product in the above
€,=10. The solid line and dash-dotted lines are the scattering funcequation involves the averages of products of cosines of the
tions computed for the molecule in the all helix and all random-coilform cog ¢;)cog ¢). These cosines generate—m=1 tran-
states, respectively. sitions in the angular momentum basis so that the action of
the cosine at thkth monomer takes the initimh=0 state into
either ofm=+1 states. The action of second cosine atjthe
f M=), m|DX(m) [2DNK(m) monomer must return the angular momentum of the state to
OO zero so that the integral over the initial and final angles does
not cause this contribution to the transition amplitude to van-
X s, (21)  ish. Thus of the four possible combinationmf—m+1 act-
ing at the two sites, only the two terms leading to no net
change in angular momentum survive the final averaging.
where both integrals range over the full unit circle. In Eq.BecauseD(m) is even inm, the factor of 2 accounts for both
(21), Z is the partition function defined in Eq6) and we  of these terms. Once again the remaining sums over the sec-
have also introduced the matrixdefined by ondary structure of the initial and final chain segments can
be performed directly.
The final sums ovey,k required to determine the radius
(v« O of gyration can be performed. If one were to assume trans-
r 0 9./ (22) lational invariance along the chain, the remaining sums over
monomers in Eq(20) can be rewritten as a single sum

775N
47°Z

(A= 2

SpSM

N-1
This matrix acting in the space of secondary structure assigns <R(2)N> => (N-KC(K), (25)
the appropriate monomer length to the segment, i.e., k=0

<+;,m|l“|+1,m >.:6m'm'7’< and <—;L,m|l“|—1,m )= O > . where we have defined the quantity C(k)
while both off-diagonal terms vanish. It represents the action X a .
of the y(s) operator acting on a given state of the HCWLC, =(7(S) ¥(S)linc 1) to be the tangent vector correlation

|s,m). The transition amplitude appearing in the above equatunction function weighted by the length of the chain seg-
tion may be interpreted again as the amplitude for the fictiMents. Due to our momentary assumption of translational

tious quantum particle. In this case we compute the amp”mvariance along the chain, this function is independent of

tude to propagatek imaginary-time slices at angular the mono_mer_i_ndex. With this assumption the correlation
momentunm, be acted on by2 that measures the square of function simplifies to

the length ofkth segment, and then propagate the remaining 1

N-k imaginary-time steps at the same angular momentum. C(k) = =Tr[['%Y . D(1)*- T . p(O)N K], (26)
Finally, the integrals over the initial and final angles of the z

chain may be performed explicitly; by not constraining these,nhere we have introduced the matrices

two end tangents, we project out the=0 state of the chain

so that Eq.(21) may be simplified to rov=y)=?-r-u), (27)
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0 =y)=.r- v, (28) >k.) having a Kuhn length ofy~-=3.0 to an essentially
straight rod of lengthy_N in the helix phase.

written in terms ofl" defined in Eq.(19) and the matrices The radius of gyration can be experimentally probed via

U(m) that diagonalize the transfer matrix at angular mome”'small-angle elastic scattering. In Figlb3 we plot the scat-

tum m (see Appendix A By performing the above trace, tgring function for HCWLC's in dilute solution as a function
going to the limit of largeN, and using fact that at any given ot the scattering wave vector for scattering andte u

angular momentum the helix phase is more probable than th§(4w/)\)sin(§/2). In the same figure we show the predicted
random coili.e., A1(m) > \,(m) for all m], we may write the scattering from WLC's.

correlation function as the sum of two exponentials: A comparison of the predicted scattering HCWLC’s and
C(k) = Ae ¥+ Bg b, (29) the better studied WLC’s demonstrates that such scattering
experiments alone are ineffective in differentiating between
where the two lengths controlling the exponential decay othese two models. The scattering from a HCWLC can always
correlations are given in terms of the eigenvallieg. (10)]  be interpreted in terms of the scattering from a WLC having

by some effective persistence length. More generally, any mea-
2,(0) sure of the radius of gyration will not distinguish the
0,= In( 1 ) (30) HCWLC from a simple WLC as long as the effective persis-

A(D) tence length of the chain is adjusted to fit the data. In order to

observe qualitatively novel behavior of the HCWLC, one
()\1(0)> must probe the force extension behavior of the chains. Here
¢,=1In ) (31) i : ) o Lo .
Ao(1) we will see hlghly_ r_lonl|near elasticity mirroring the nonlin
ear bending elasticity of these polymers.
The coefficients of these two decays are written explicitly in
Appendix B. 2. Force extension relations: Small forces
The existence of two exponential decay lengths for the
correlation function reflects the fact that between any two
tangents along the chain, the polymer may exist in one of
two states having differing monomer lengths and thermal N
persistence lengths. To better understand this result it is in- H=Ho-F> ys)cogh), (33
structive to study the limit in which it is highly unlikely to i=0
find the chain in the random coil statg,>1 andh>1. In
that limit, A\,(m) — O so thatf,,— o; the decay of correlations

IS tdomlnatedf ?ﬁl the Ieng.tlﬂa~1/;<> n thlsolﬂ!nglt..trlfr:)hm tion of the chain partition function based on the above
extensions ot this reasoning one can assodglevi € Hamiltonian would, of course, result in the complete descrip-

decay length of correlations for a section of polymer thato., ¢ yhe equilibrium force and extension relations for this
starts and ends with helical segments. Between these helic odel. Unfortunately, a closed-form expression for this par-

segments this correlation length is related to some f”nCtiO'ﬂtion function is not possible since, and the term propor-

of both «., . due to fluctuations into the coil phas_e. Simi- tional to the applied force are diagonalizable in the momen-
larly, the length¢, controls the decay of correlations for%

In the presence of a stretching foreéghe Hamiltonian of
he HCWLC may be written as

whereH, represents the HCWLC Hamiltonian in the absence
of externally applied forces as shown in E¢). A calcula-

ts of the chain that beai 4 end with d um and position representations, respectively. The basis
segments of the chain that begin and end with random €Ok ,iaq that diagonalize the full Hamiltonian, E83), are the
segments. Once again, due to fluctuations into the helic

h his | his o f . b nergy eigenstates of the quantum pendulum. We do not pur-
P ?fe EI Is lengt |sfa unfctlor;]o Oﬂll,K?. ¢ 06k sue this approach here. The identical issue arose for the study
inally, given a form for the correlation functioB(k) ¢ yha stretched WLC: there approximate numerical diago-

obtained from the assumption of translational invariance, ji;ation[36] and variational calculatiof27,36 have been
along the chain, we may directly evaluate the radius of 9Ysuccessfully employed.

ration. We find We begin by considering small externally applied forces

Adla and consequently small chain extensiakis. Defining Ay
(Rgw = W[N(ega - 1) +eNa—1] =y.—v. to be the extension of a monomer under the helix-
to-coil transition, we consider the small force to be those for
which FAvy is small in comparison to the other four energy
scales in the problem. Using this assumption, it becomes
reasonable to expand the chain free energy in powers of the

We suspect, however, that at least in the case of highlgxternally applied force. We thus generate a cumulant expan-
cooperative or short chains for whiefy>In N the effects of  sjon

the chain ends will be significant and thus break the assumed .

translational invariance used above. In order to evaluate the C_

radius of gyration of the chains that strongly break transla- InZ(y) = lz ﬁF (34)
tional invariance, we numerically evaluate the requisite sums -0

to determine the radius of gyration; these results are showthat is similar in spirit to those obtained from high-
in Fig. 3. There we see the crossover of a random @il temperature expansions of the Ising mdd«]]. In the above

b
’ (ee?ﬁ 1)2['\1(e€b -)+eMe-1]. (32
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equationg, is the Ith-order cumulant. These cumulants are k N
thermally averaged quantities in which the averaging is per- ] m+2
formed with respect to the zero applied force Hamiltonian,
Ho. Calculating the derivatives of Eq34) evaluated af

=0 allows one to calculate the mean extension of the chain in S
the direction of the applied force in powersfFinally, we k N "o K
note that since the remaining thermal averages are to be per- 1
formed with respect tdH,, we may borrow the formalism S | 0 m+ N
used to compute the torque and angle curves and consider “m m
averages over restricted ensembles in which the first chain

tangent is directed along (taken to be in the direction
while the last chain tangent is fixed at an angleWe can 0 K 0 j k N
thereby explore the coupling of applied torques to the exten- ———e
sional compliance of the chain using this formalism. N

Taking the first cumulant, which is the term linear in the — 0 j
force, we calculate the mean length of the polymer chain in m
the absenceof any applied force:

N N
L)) =\ 2 rsJcosb ) (35) m =2

0 v FIG. 4. Diagrammatic expansion used to calculate the extension
where the average), is taken over the force-free, restricted of the chain order by order in the externally applied force. The
ensemble of chains having an initial tangent in #hdirec-  combination of two terms on the left give th@(F) terms that
tion and a final tangent making an anglewith respect to  determine the mean length of the chain at zero applied force. The
that initial tangent. The restriction placed on the first tangenfour terms on the right give the linear response of the mean length
breaks the rotational symmetry of the system, leading to gue to an externally applied force. In both figures the angular mo-
nonvanishing value ofL)(¢). mentum increases in the vertical direction and each horizontal leg

Based on our discussion of the radius of gyration of theof the walks represent products of the transfer matrices _at _the la-

chain, we can compute these mean extension at zero ford§'€d angular momentum. The labels 0 #hdenote the beginning

ina the transfer matrix hni . m written and .end of each chain, respectively. The Iapeled interm.ediat.eksites
using the transfer matrix technique; E§5) may be writte andj denote the monomers where the cosines act to either increase

as or decrease the angular momentum of the walk by one unit. Mirror
N reflections of each diagram about the dotted line has the same con-
(Ly=>, > (S0, 00 =0T *y(s)cos 6TV sy, 1) s, tribution to the sum.
k=0 so,sn

(36)  the chain contour(coseilcosai2~~~cos€in>. There is a one-
to-one mapping of such products to the set ofnaditep ran-
Qom walks in momentum space. For example, the right-hand
rE‘)eanel of Fig. 4 shows all two-step random walks. That set of
random walks in the momentum space sums to give the lin-
ear response of the mean length of the chain to the externally
applied forceF.

Working, once again, in the momentum representation w
can recast the above expression into a simple sum over o
angular momentum variable and the four possible combin
tions of secondary structure states of the initial and fina
chain segments:

N-1 By expanding about zero applied force we may obtain an
L= > 75| (50, 0T KPTN K5y, 1)cog ) expression for the series expansion of the mean length as a
k=0 Sp.Sn function of applied force of the form

(LYF, ) = Lo(h) + Ly(h)F + Ly()F? + -+, (38)

where the prefactors of the odd-index terms—i.e.,
(37) L2n+1(¢)F2“+'1—vanish upon avera.ging' over all end angfes
Each term in the above expansion is the set ofnaditep
The structure of the above expression may be characterizedndom walks in momentum space. Each involves a sum
by using a simple graphical representation. In the left panebver the states of secondary structure at each end of the
of Fig. 4, we represent the above terms for the first cumulanthain, which may be performed exactly, and one infinite over
(the mean length of the chairas the set of all one-step a single angular momentum variable. The latter sum cannot
random walks in angular momentum space. As noted abovia general be performed exactly, but as discussed above, it
in the computation of the radius of gyration, each factor ofmay be numerically approximated to arbitrary precision. In
cosine increments or decrements the angular momentum. fractice because of the rapid convergence of this sum with
general thenth-order cumulant requires the determination ofhigh m, only a few terms are required to generate an excel-
the thermal average of the product mfsuch cosines along lent approximation.

+2, (So.MT KTV K5y, m+ Lycog[m+ 1]) |.
m=1
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FIG. 5. Mean length of the HCWLC in thermal equilibrium as a
function of the parametehn, the free energy cost per segment to
transform to the random-coil, non-native state. The bending modu-
lus of the coil sectionc. =10, x~ =100 and the length of the helix
sectiony_ =1 for this plot. The polymerization index of the chain is
N=10. The initial and final chain tangents are fixed so that 6y
=0. As h increases we see the effect of the HC transition on the
mean length of this stiff chain.

Constraining the initial and final chain tangents causes
each walk in momentum space to be weighted by a phase
factor exgiAmy). Thermal averages over the ensemble of . o
chains having unconstrained final tangents can be computed F'G: 6. The mean length vs applied force for HCWLC's with
by averaging over . Due to the aforementioned constra_lned eno_l tangents so tligE=0 andBN_:w. In both flgur_es
y-dependent phase factor, this averaging eliminates anree different final angles are shown=0 (circley, y=/6 (tri-
walks, which results in a net change in the angular momenggg(l)e?\’lf‘;g wy_f/; (ysq_uirelﬁ (lg) (62’ fg_iog’l'(i_f’lgw;ia’g

. . P 2.V, N=1U, V>=9, V<=1, y A>T, Re= 4, = LY, 1= 4.9,
tum of the chain. For instance, the two walks comprising thg_,, The upper figure shows the expected behavior of an

mean Iength of the cha_lin at Zero_for(:left pane_l of Fig._é}_ a-helical polypeptide chain. For comparison, a longer HCWLC of
both vanish when the final angle is unconstrained. This is tQ,,ter persistence lengths is showr(tin

be expected from basic symmetry considerations. By relax-
ing that constraint, one restores the rotational symmetry oforce spectroscopy experiments it will be problematic to si-
the problem so that the mean extension of the polymer alongiultaneously control both the applied force and final chain
the X axis necessarily vanishes in the limit of zero appliedtangent. While we suspect that force spectroscopy with un-
force. constrained angles will be more experimentally relevant, we
Since the transfer matrix is even with respect to angulabelieve that in order to discugshelical domain extensional
momentum, there is an additional reflection symmetry; eaclelasticity within the native state of a protein, such boundary
walk from m to m’ makes an identical contribution to the condition prescriptions may prove necessary. We plot in Fig.
final result as that walk reflected abaut=0—i.e., the walk 6 the nonlinear force and extension behaviorcluding
from —mto -m’ in which each increment of angular momen- terms up taF?) of two representative HCWLC’s for a variety
tum is replaced by a decrement and visa versa. We emplogf angular bendsy. Higher-order terms in the applied force
this additional symmetry of the problem to rewrite the set ofcan be computed similarly. For the case of unconstrained
two random walks comprising the mean length as shown irnitial and final tangents, we have developed an automated
Eq. (37). procedure to calculate terms of the perturbation expansion to
We plot in Fig. 5 the mean length of the chain as a func-arbitrary ordef51].
tion of h, the excess free energy per unit length associated In Fig. 6(@) we observe the nonlinear extensional compli-
with the existence of nonnative secondary structureh If ance(through terms of ordef?) of the HCWLC for the case
<1, we expect the chain to be driven into a random-coil ,that chain is much shorter than its thermal persistence length.
non-native structure in order to increase the chain conformafrhe different symbols correspond to differing imposed cur-
tional entropy associated with the disordering of the polymewatures on the chain—see the caption. The finite extension at
backbone tangent vectors. For valueshef 1 we expect a zero force is consistent with the assumption that the chains
highly cooperative(e,>In N in this example systemand are simply bent into the arc of a circle consistent with uni-
therefore sharp transition to thehelical, native state. This form distribution of chain curvature as required to minimize
transition is evidenced by the precipitous decrease of thehain bending energy. By noting the difference in slopes of
chain’s extension occurring &t=1. the three extension versus force curves in Fig),®ne sees
Using the formalism described above we may also comthat the extensional compliance of the chain in the direction
pute the linear andonlinearresponse of the chain to a force parallel to the applied force depends on the angle of the final
F by considering longer walks in momentum space. We rechain tangentg. In part (b) of this figure we observe the
port those results as a function of bdthand ¢, the angle of  predicted force extension relations to the same order in the
final chain tangent. It is likely that in future single-molecule low-force perturbation theory for the HCWLC'’s where the
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persistence length is less thareven in the stiffera-helical EWN—l ho N-1 K(s)

phase. As evidenced by the equality of the slopes of all threeH = EE (1-5S41) — 52 (s-1)+> 7[0”1_ 6,12
figures, the effect of imposed curvature on the subsequent i=0 i=0 i=0
extensional compliance of this chain is minimal. For a more N 92
flexible chain twisting the final tangent has little effect on the -F> y(s-)[l - —'} . (39

compliance under subsequent extension. We expect the upper i=0 2

panel of Fig. 6 to better reflect the mechanicaleehelical  The apove Hamiltonian is now quadratic in the angles of the
polypeptides. chain tangent vectors. We fix the initial and final chain tan-

The perturbation theory presented above appears to begents to lie along the direction of the applied forégs 6y
useful approach to the study of small extensional deforma=0. By iterative Gaussian integrals over the remaining
tions of a-helical protein domains. A generic feature of this angles we determine an effective partition function that is
model is the nonlinear growth of the effective extensionalnow a sum over only the secondary structure degrees of free-
compliance of the chain with increasing applied force. Thedom. After integrating ovew,, ... ,6y_1 the partition func-
underlying mechanism must be the enhanced statisticdion in the high-force limit reduces to the form

weight for finding a segment in its longer non-native state. N-1

The applied force thereby accesses a reservoir of chain z=" exp ﬂz (1-5801)

length built into each segment; such a mechanism has been (s} 2 2o

studied in detail by Tamashiro and Pind4s]. The tangent N N

vector fluctuations in our model should enhance the nonlin- _h L _

ear growth of the effective chain compliance. When 22)(3‘ b szzo 7(5“)]‘][{5}]’ (40)

< k- the random coil sections of the chain recover a signifi-

cant entropic contribution to their free energy. The chain as itvhere the remaining sum is over alf 2onfigurations of the
extends into the random-coil phase not only becomes physBecondary structure variables. We have introduced the quan-
cally longer, but also has a decreasing effective persistend8y J[{si},N] produced by the Gaussian integrals. Itis a func-
length. The combination of these two factors enhance th#on of that secondary structure configuration defined by

effective compliance of the chain. N
The perturbatively evaluated HCWLC model, however, JishN =11 2m e YSF (41)
fails to reproduce the central aspect of the high-force limit. ' =1 ¥ 2R+ «(s)

In order to capture this basic feature of the WLC that must ) ) ) ]

also hold for the HCWLC, we must augment our low-force Each termRi in the above product is defined recursively by
perturbation theory by other methods better adapted to th&'€ eguation

high-force limit. Since one may compute théh cumulant, _ k(S.DR Fus)
which generates th@n—1)th term of the series expansion of R = 2R+ k(S_1) >
the force-extension curve as shown in E28), one might at Rt (S
first imagine that one could perturbatively determine thefor i=2,... N, where we fix the initial condition for the
force-extension relation of the HCWLC at arbitrarily large recursion by setting
forces. This is not the case. In fact, the perturbative approach E
to the high-force limit is incapable of capturing the essential R, = (s +Fs)
aspects of the behavior of the WLC or the more complex 2

HCWLC. The high-force limitF —c is an essential SiNgu- pq i term in the product depends on the full set of sec-
larity of the partition function and thus cannot be approxi- o, qan strycture variables from site 1 back to 0. Similar

mately by a Laurent series in force. This has been direCWecursion relations having a constant valuexo&nd y are
confirmed by Marko and Siggig36] who have shown by discussed by Lamuret al. [38].

integrgting qut the tra_ns_verse contour fluctuations of the Examining Eq.(40) we see that by integrating out the

WLC in the high-force limit that the mean length appro.aCheStangent vector degrees of freedom we have taken the Ising-
the mgX|maI lengthl as <,L>/L~1__F 1/2,' Perturbatlon model partition function corresponding to the secondary
theory in the low-force limit(expansions inF) or in the g crure variables, which had only nearest-neighbor cou-

(42)

. (43

high-force limit (expansions in 1) will miss this result. plings, and transformed it into the partition function for the
secondary structure variablds;) having interactions be-
3. High-force limit: Mean-field theory tween these variables at distant sites along the polymer

chain. This result is to be expected: the combination of the

We now study the extensional compliance of the HCWLCcoupling between the local chain tangents and secondary
in the high-force limit. In order to explore the approach un-structure generated by(s) combined with the long-range
der high forces of the mean chain extension to its maximatoupling of those chain tangents to each other over
extensiorL=1-N, it is reasonable to assume that the tangentnonomers leads to a new effective long-range interaction
vector fluctuations become small so that a Gaussian approxbetween secondary structure variables mediated by the con-
mation is justified. We may approximate the HCWLC Hamil- formational degrees of freedom of the chain. It is clear from
tonian, Egs(4) and(33), by Egs. (41)—<(493) that the simple Ising description of the sec-
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ondary structure variables is recovered in limit of chains withfixedmean-field persistence lengtk) and afixedmean-field
a vanishing persistence lengkh— 0 where the tangent vec- monomer lengtlfy). We also take the mean-field approxima-
tor degrees of freedom do not mediate a long-range interagion s,=m for all k in the HC part of the Hamiltonian. The
tion between thes variables. In that case the recursion rela-function J[s,, 1] represents the one Gaussian integral associ-
tion can be trivially solved to yiel®R =Fy(s))/2 so that the  ated with angular degree of freedom at tHesite.
remaining partition function of the secondary structure vari- The physical meaning of E¢46) is that the free energy
ables in Eq(40) reverts to that of an Ising model, but one for of the chain in the mean-field description may be written as
which each secondary structure configuration is weighted byhe sum of three parts. The first part given by the negative
its effect on the chain extension in the direction along thélogarithm of Jye[«,y,m;N/2-1] gives the free energy of
externally applied force. the half of the chain to the left of the selected sit€his free
The short-persistence-length, decoupled limit is clearlyenergy is evaluated using the mean-field approximation for
not of primary interest in modelling as-helical polypeptide.  the secondary structure variables and the Gaussiarall-
In fact, considering that we are primarily interested in mol-anglg approximation for the tangent vectors. The last term in
ecules that are not significantly longer than their persistencghe sum is the analogous contribution to the free energy as-
length (in the a-helical phasg it appears physically reason- sociated with the length of polymer to the right of the se-
able to take a diametrically opposed approximation. For suclected sitei and evaluated using the same approximations.
chains wherex-. ~N one suspects that the statistics of theFinally, the middle term in the product appearing in E4f)
secondary structure variables is better represented in a megg-the contribution to the free energy of tth site itself. The
field approximation enforced by the long-range interactiongGaussiah integral J[s;, 1] accounts for the tangent vector
between these variables due to tangent vector correlatior&gree of freedom while the sum on one remairsngari-
along the chain. To implement a mean-field approach, wple is written explicitly above.
ignore boundary effects and study one secondary structure To justify choosing theéth site at the middle of the chain
variable in the bulk of the chairg. This single degree of tg pe representative of any site, we must ignore boundary
freedom interacts with the mean field of all the other Secondeﬁects_ Consequenﬂy the mean-field description iS most ac-
ary structure variables along the chain. We define the meagyrate in the limit of long chains—i.e., N> ¢,. Finally,
value of these variables am=(s;), for all j#i. From this  self-consistency requires that the thermal average of the sec-
definition it is clear that ~xm<(1. In order to discuss the ondary structure at thigh also be equal ton. Thus we de-
chain persistence length and effective monomer length wenand
must generalize Eq$3) and (19), respectively, by introduc-

ing the mean values of these quantities by defining m=(s) = zanF 47)
dh
— K> K<
K= ?(1 +m) + 7(1 -m), (44) From Eq.(47) we obtain a solution for that, when used in

conjunction with the mean-field free energy functi@iy-=
—-InJyelx,v,m;N], gives a complete thermodynamic de-
y= k(1 -m)+ k(1 +m). (45)  scription of the chain under an externally applied force. In
2 2 particular we compute the mean length of the chain under

The linear dependence of these valuestomay be justified these conditions from

by noting that(s))=m implies that each segment spends a OF e
fraction (m+1)/2 of the time in its native state. At least on (L)=- F
time scales long compared to interconversion time between

the s;=+1 states, one would observe the effective values We plot the mean extension of the polymgn in the

and y as defined above. Of course, nothing in the presengirection of the applied force normalized by the maximal
analysis determines this interconversion time, but we expeaxtension of the chaih=Ny- in Fig. 7. The applied force

it to be on the time of conformational changes of small mol-has been nondimensionalized by the length Qualitatively
ecules~107s. Both force spectroscopy measurements anghe figure may be discussed in terms of four regimes charac-
protein conformational changes occur on much longer timeerized by abrupt changes in the dependence of the mean

(48)

scales where the approximation E¢$4) and(45) is valid. ~ |ength on applied force. For the smallest forces we see the
We may write the mean-field free energy of the chaininitial extension of the predominant native-statehelical
under the externally applied force in the form chain. As long as thé>FAvy the free energy decrease as-

sociated with the breakdown of the native state of molecule
and the consequent extension of each monomex y y-.
—v. is more than offset by the free energy increase per unit

X Il 7 m:N/2 = 1J[s;, 11Iwel x, 7,m; N/2 - 1]}_ length of creating segments in this nonnative sthteThus

fMF —_ |n{ 2 e—(eW/Z)(m§—1)+(h/2)(si—1)+Fy(§)
s=%1

the secondary structure variables are frozen in the native
(46) state and the extension of the chain proceeds by the suppres-
sion of contour fluctuations transverse to the extension direc-
We have defined quantity,e[ «,y,m;N] to be analogous to tion. The effective maximal extension of the chain is
JI{S}.N] [see Eq.(40)] for a chain ofN monomers with a Ly./y. (hereL/3) and the saturation of chain extension
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Eventually one would like to apply such a model to entire
proteins although such a program requires in general a me-
chanical description oB-sheets and an investigation of the
mechanical interaction of protein subdomains. In principle,
the combination of a model of the nonlinear elastic proper-
ties of such domains with an accurate three-dimensional pro-
tein structure in its native state should enable the investiga-
tion of protein dynamics and particularly conformation
change under biologically relevant conditions. It is known
that at least some proteins are bistable having at least two
structurally different conformations. In this paper we have
, , ) , shown that, due to the coupling of the conformational de-
0 2 4 6 Fy 8 10 grees of freedom to the internal, secondary structure vari-

N ables, a-helices are generically bistable mechanically. One

FIG. 7. The mean |ength of the chain as a function of the apmay Speculate as to whether this inherent blstablllty prOVideS
plied force normalized by the maximum lengthcomputed using @ Mesoscopic mechanism to elucidate protein conformational
the mean-field approximation discussed in the text. The parametefange.
for the solid line ate, =10, h=1, k==2, k=1, andN=10. The n order to carry forvv_ar_d this program and to make quan-
dashed line shows an analogous plot using parameter values oftitatively falsifiable predictions for the mechanical properties

=1.5,,=8, k~=100, andx=1. These latter values are represen- Of single a-helices it is necessary to determine the energy
tative of a-helical protein domains. scales that enter the HCWLC Hamiltonian. Unfortunately,

these four energy scales are imprecisely known at best. The
better studied energy scales involve the helix-coil parameters
€, andh. Both of these parameters are extremely difficult to
estimate based on first principles since these energy scales
involve complex solvation energigd$2] in addition to the
ormation of hydrogen bonds between adjacent turns of the
a-helix. These parameters can be estimated, however, by fit-
EEing HC models to both the results of molecular dynamics
imulations and experimef$3,54]. In terms of our param-
ters this work provides the following estimateg:=7 and
=1.5. Thus we note that since typicathelix domains in

<L>/L

reproduces the Marko, Sigg[&86] result so thagL)/L~[1
_(FK>7’<)_1/2]N7</7>-

If the system were well described by a WLC model, this
high-force plateau would be flat as the chain extension a
ymptotically approached its maximal value. The observe
slow growth of the chain extension or “pseudoplateau” is du
to the presence of local secondary structure fluctuation
With increasing force, these fluctuations are biased towar
the more-extended, non-native state so that the mean leng

of a mon(r)]mer ?rQWSdSLOW,:K with arszlieldtforcet. Thi_s Stecor.‘dproteins haveN~ O(10) [55,56], these domains are highly
regime characterized by the pseudoplateau terminates 'n.caOOperativeﬁW>ln(N).

rapid extension regime where the secondary structure is There are little data on the persistence length-tielices.

pulled apart by the applied force. The requisite force to open . . . i
up thesea-helices determines the transition to this rapid ex-We estimate the bending modulus of athelix by assuming

tension regime. That force is given Ay~ e, +h where that its enhanced stiffness arises primarily from interloop hy-

the net extension of one segment enthalpically compensatr%srogen bonding. Taking the energy scale of these hydrogen
I

for the creation of a random coil segment and a domain wa o3n6d?m'§o ;r? d Bﬁ;i—c;?(?;- di[u‘r’;](') frr]m']ntvevgoﬁﬁ ddiiz?v(\:/ieth()f
on the chain. Finally, in the fourth regime, the applied forcekBTzl) the persistence length of the-helix should beeg

has thoroughly destroyed the secondary structure. With in-* 10-50 nm. From this persistence length we determine the

creasing the force the now random-coil chain approaches i . N
maximal extensiorL in a manner first discussed by Marko tﬁ(‘;\é\/_l‘&obevr\]/ﬂw%hSg%ggﬁcev'gfpggrgggn St?ontgii;l(i; the

and Siggia. non-native, random-coil state we assume that the persistence
length is €;~1 nm, typical of simple hydrocarbon$8].
Thus it is reasonable to suppose thaty. =« ~ 3. There is

We have proposed and explored an extension of the traa significant dependence of the thermal persistence length
ditional WLC polymer model in order to incorporate the upon the local secondary structure: the raio/ k. may be
presence of internal degrees of freedom along the polymeas large as 50. In order to explore the phenomenology of the
backbone and the coupling of those internal degrees of freenodel we have shown results for various parameter values,
dom to the conformational degrees of freedom of the chainbut we have always included plots corresponding to these
Such a model constitutes a minimal description of manybiologically relevant parameters mentioned above. From
biopolymer systems, but we focus on developing a descripthese estimates of the biologically relevant energy scales in
tion of an a-helical polypeptide chain. By studying the me- the model we predict the critical torques for the buckling
chanical properties in thermal equilibrium of such polymersfailure of the alpha helix to be-40 pN nm. The force re-
one will develop insight into the mechanical propertieslef quired to pull out thea-helices leading to the dramatic
novo designed a-helical chains and biomemtic synthetic lengthening of the chain is roughly 150—200 pN.
polymers that acquire helical secondary structure in aqueous The central result of this paper is that amhelical
solution. polypeptide is highly nonlinear in its response to applied

IV. CONCLUSIONS
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forces and torques. The source of the nonlinearity is the cou- M(m)=2d, Ay(m) - 2d,,
pling between local secondary structure and the conforma- U(m) = 2¢, 2¢,
tional state of the polypeptide backbone. Bending or pulling

on the a-helix mechanically can result in the abrupt break- 1 1
down of secondary structure and consequently a dramatiwhere \; ,(m) are the eigenvalues of the transfer matrix
increase in bending and extensional compliance. The stressgwen in Eq.(10) and the functions,,, andd,, are simply the
required to access this highly nonlinear behavior occur orpottom row of the transfer matrix. In other words,

: (A1)

scales relevant to biological activity. = e e ] i ] (A2)
and
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A=T{TEY, (B1)
= 1010
APPENDIX A: DIAGONALIZATION OF THE B=I'2 151 (B2)
TRANSFER MATRIX Determining these coefficients in terms of the fundamental

parameters of the model is now a matter of some algebra. To
The transfer matrix at a given angular momenttitm)  simplify this work and to better display the result, we find it
given in Eq.(8) is diagonalized by the similarity transforma- helpful to write A and B in terms of y, and the transfer
tion D(m)=U~Y(m) - T(m) -U(m) where the matriXJ(m) is matrix eigenvalues.; ,(m) given by Eq.(10). We find

A= 4cqCyy- — y-[2d; — N1(1)][2dy — N5(0)] 4coCyy- — y[2d5 — N1(0)][2d; — Ax(1)] (B3)
4c5 - [2dy = \1(0)][2dg — N5(0)] 4ct - [2d; = \(D)][2d; = Np(1)]

and

5= 4¢1y-[2do = Mp(0)] + Coy=[= 21 + Ap(1)] Cry[~ 2do + A1(0)] + Coy-[2ds — N4(D)]
4c - [2do — M1(0)][2d — N5(0)] 4cf - [2d; - My(D][2d; — No(D)]

In the above equations we have used the functions defined in(&2sand (A3).
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