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We study a minimal extension of the wormlike chain model to describe polypeptides havinga-helical
secondary structure. In this model the presence or absence of secondary structure enters as a scalar variable that
controls the local chain bending modulus. Using this model we compute the extensional compliance of an
a-helix under tensile stress, the bending compliance of the molecule under externally imposed torques, and the
nonlinear interaction of such torques and forces on the molecule. We find that, due to coupling of the “internal”
secondary structure variables to the conformational degrees of freedom of the polymer, the molecule has a
highly nonlinear response to applied stress and force couples. In particular we demonstrate a sharp lengthening
transition under applied force and a buckling transition under applied torque. Finally, we speculate that the
inherent bistability of the molecule may underlie protein conformational changein vivo.
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I. INTRODUCTION

The study of the mechanical properties of individual
biopolymers serves as an important laboratory to probe poly-
mer physics at the length scale of a single chain and further
elucidates the biological processes in which these molecules
take partf1,2g. For example, the biologically fundamental
processes of DNA replication, transcription, and the regula-
tion of transcription rely on the DNA protein interactions
involving the mechanical deformation and microstructural
modification of DNA both at long length scales and at the
scale of individual base pairs. Recent advances in the experi-
mental manipulation of individual biological macromol-
ecules has opened a new window on these processes and
allows for the direct quantitative test of our understanding of
the mechanical properties of these macromolecules in ther-
mal equilibrium. These single-molecule manipulation experi-
ments have probed the mechanical properties of not only
DNA f2–8g but also a variety of biologically important mac-
romolecules including polysaccharridesf9,10g and giant pro-
teins such as titinf11–13g and tenascinf14g. The better the-
oretical understanding of protein mechanics will enhance the
interpretation of protein force spectroscopy, which may even
shed light on protein folding pathwaysf15g, although this
latter point appears to be somewhat controversialf16,17g.
Regardless, understanding the mechanical properties of pro-
teins is fundamental to elucidating the allosteric or confor-
mation changes that many proteins undergo as part of their
biological activity f18–21g.

These last examples demonstrate the feasibility of the di-
rect mechanical manipulation of single proteins. However,
modeling the mechanical properties of these atypically large
proteins or, for that matter, any entire protein is a daunting
task since such molecules have complex structures that result
from a number of local and nonlocal interactions along the
polymer chain. In order to make quantitative progress in the

interpretation of these protein manipulation experiments it
appears to be useful to first understand in more detail the
mechanical properties of simpler polypeptide-based struc-
tures. A natural candidate for such a simpler structure is a
protein subdomain of one secondary structure. Here too there
is experimental input: single-molecule force spectroscopy
via atomic force microscopysAFMd has been used to di-
rectly probea-helical polypeptidesf22g as well as synthetic
polymer chains with a local helical structure such as PEG
f23g.

In order to understand the mechanical properties of pro-
teins in general anda-helical polypeptides in particular it is
necessary to develop a minimalistic model that incorporates
both the conformational fluctuations of the polymer back-
bone and localized structural transitions of the constituent
monomers. In other words it is necessary to augment simple
models of the statistical mechanics of the peptide backbone
with terms to account for the presence of secondary structure
along the chain. Furthermore, we must allow for the interac-
tion between the degree of local secondary structure and the
conformational degrees of freedom of the polypetide back-
bone.

In this paper we examine the predicted mechanical prop-
erties of such a minimalistic model of ana-helical polypep-
tide in which we allow the interaction of the local secondary
structure of the chain with its conformational degrees of free-
dom. We treat the local presence or absence of secondary
structure as a two-statesIsing-liked variable along the chain
backbone, which is itself described by a set of local tangent
vectors to the chain. In order to make this simplification, we
coarse-grain the polymer so that each independent monomer
can be unambiguously assigned a state of secondary struc-
ture. This requires us to consider a model comprised of
coarse-grained chain segmentssi.e., monomersd, each con-
sisting of about three amino acids. The interaction between
the internal, secondary structure variables and the conforma-
tion of the polymer chain as described by the set of backbone
tangent vectors is effected by the presence of a bending
modulus of the backbone whose value depends on the local
state of secondary structure. When these three amino acids
making up one model monomer adopt a local configuration
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consistent witha-helical secondary structure, the hydrogen
bonding between these amino acidsf24g renders that seg-
ment of the chain significantly stiffer than the same polymer
without the locally ordered secondary structure. Thus the
bending energy associated with the local change in the back-
bone tangent vectors is higher in regions havinga-helical
structure than in regions locally adopting a random coil con-
figuration. Similar models can and have been applied to
study the mechanical properties of DNA and have been dis-
cussed in the current context as wellf25–27g.

To qualitatively characterize our results presented below,
we note that, due to the presence of the internal-state vari-
ables representing secondary structure along the chain and
their control over the local chain bending modulus, the
a-helix is predicted to have a highly nonlinear response to
both bending torques and to extensional forces. Under small
externally applied torques, the molecule will deform so that
its thermally averaged chain contour takes the form of the arc
of a circle and the torque necessary for bending the molecule
through a given angle grows linearly with that angle. The
molecule deforms roughly as a flexible rod. At a critical
torque, however, the secondary structure of the molecule is
locally disrupted, producing a small length of the backbone
with a much softer bending modulus. The total curvature that
had been uniformly distributed along the backbone becomes
localized in the anomalously soft region produced by the
disruption of the secondary structure and the torque required
to enforce the curvature of the molecule drops precipitously.

The long-range goals of this sort of modeling go beyond
the interpretation of the emerging experiments on the me-
chanical properties of polypeptides havinga-helical second-
ary structure. By understanding the mechanical properties of
the constituent elements of a protein it should be possible to
develop a lower-dimensional representation of protein me-
chanics. In place of the atomic coordinates of the backbone
carbons and the positions of the various amino acid residues,
one may describe protein domainsshaving definite secondary
structured as a space curve having some nonlinear exten-
sional and bending compliances that may be computed in
terms of a few energy scales determined either from experi-
ment or simulation. Using three-dimensional protein struc-
tural data and such a nonlinear elastic model for each struc-
tural element of definite secondary structure, one can attempt
to build mechanical models of entire proteins that, due to
their highly reduced number of degrees of freedom, are more
tractable for numerical investigation than those based on all
atom simulations.

From the study of those models one may be able to ex-
tract low-energy conformational pathways and thus make
predictions regarding protein allostery. For example, from a
combination of native-state protein structural data and the
calculated nonlinear elastic properties ofa-helical protein
domains it may thus be possible to predict the mechanical
properties of thea-helical coiled coil region in myosin II
f28g or a-helix-rich proteins such as spectrin as probed by
mechanical unfolding experimentsf29,30g. Further data on
protein conformational change are available from numerical
simulationsf31,32g.

The remainder of the paper is organized as follows. In
Sec. II we introduce thea-helix Hamiltonian based on a

combination of the wormlike chain and the helix-coil model.
Using this model we calculate the response of the chain to
bending torques in Sec. III A. We then take up the problem
of the extensional compliance of thea-helix in Sec. III B
before summarizing the results and discussing possible ex-
perimental tests of the theory in Sec. IV.

II. HELIX-COIL WORMLIKE CHAIN

The wormlike chainsWLCd f33,34g is the fundamental
coarse-grained model for a polymer at length scales shorter
than its thermal persistence length. This model describes the
single-chain polymer statistics in terms of a quadratic Hamil-
tonian that associates an energy cost with chain curvature by
introducing a bending modulusk. In terms of a discretized
chain model described by the set of monomeric tangent vec-
tors t̂i, i =0, . . . ,N−1, with N the degree of polymerization,
the WLC Hamiltonian may be written as

HWLC = ko
i=0

N−1

f1 − st̂i · t̂i+1dg. s1d

The effect of this bending energy is to enhance the statistical
weight of straight chain configurations on a length scale ofk
monomers equal to the thermal persistence length. Here and
throughout this paper we takekBT=1. It may be easily
checked that this length is equal to the arc lengthsmeasured
in monomer lengthsgd of the polymer chain over which the
chain tangent vectors thermally decorrelate. At length scales
much longer thankg the effect of this bending energy is
minimal and the equilibrium statistics of the polymer be-
comes controlled by a combination of intrachain collisions
and chain configurational entropyf35g with a renormalized
Kuhn length. Inu solvent one finds in the limit of very long
wormlike chains the radius of gyration to be given bykRg

2l
=2kg2N whereg is the monomeric length.

The single-chain response to externally applied tensionF
has also been exhaustively researched within the WLC de-
scription of the polymerf36–38g. The fundamental result of
this work is that one may determine the extensional compli-
ance of the molecule as a function of applied force. This
compliance is defined as]kLl /]F, the derivative of the equi-
librium chain lengthkLl with respect to the applied forceF.
At low forces it is essentially constant reflecting the stan-
dard, quadratic reduction in chain configurational entropy as-
sociated with long, flexible polymers. At high forces, how-
ever, the compliance goes to zero asF−3/2 due to the fact that
the chain has a finite length at even arbitrarily high forces.
The characteristic form of the approach of the compliance to
zero in the high-force limit is controlled by the pulling out of
small, transverse thermal fluctuations of the chain and
thereby recovering the arc length stored in them to increase
kLl.

While the WLC is a highly successful model to describe
the force extension properties of a number of biopolymers
such as DNA, it is clear that it is not sufficient to properly
describe these molecules under large enough tensions. At
larger tensile stresses, details of the internal structure of the
molecule become important for the understanding of confor-
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mational properties of the molecule. For example, under
large enough stresses the double-helix structure of DNA
sB-DNAd can be unwound allowing each monomer to
lengthen by a factor of about 1.85f39g. To account for such
stwo-stated internal degrees of freedom along the chain,
workers have employed the helix-coilsHCd modelf40g. This
model has been used to study a class of protein conforma-
tional transitionsf41,42g in solution and under tensionf43g.

The HC model Hamiltonian, which is used to model these
structural transitions, can be reduced to its simplest form by
assuming that the local structure of the chain can be de-
scribed by a set of two-state variablessi = ±1, i =0, . . . ,N.
For thea-helical chains of current interest we regard these
two states as the local conformation of the monomer in its
native, a-helical statess= +1d and in a disordered, random
coil statess=−1d. The statistics of this set of two-state vari-
able is controlled by the Hamiltonian

HHC =
ew

2 o
i=0

N−1

s1 − sisi+1d −
h

2o
i=0

N

ssi − 1d. s2d

It is immediately clear that above Hamiltonian also describes
a one-dimensional, ferromagnetic Ising chain. The interpre-
tation here is somewhat different. The energyh playing the
role of an external magnetic field in the Ising system now
represents the free energy cost per monomer to be in the
non-nativesi.e., random-coild state. This term is thus con-
trolled by a combination of the chemistry of the monomeric
residues and solvent quality; its calculation from fundamen-
tal solution chemistry is beyond the scope of the current
work. However, we will attempt to estimate its magnitude
based on experiment. Clearly this constant is at least of order
unity since the protein domain under investigation is as-
sumed to have ana-helical secondary structure in thermal
equilibrium.

The first term in Eq.s2d plays the role of the nearest-
neighbor ferromagnetic coupling in the Ising interpretation
of the Hamiltonian. In its current interpretation,ew is free
energy cost of a domain wall in the sequence of helixss=
+1d and random-coilss=−1d sites. In the helix-coil literature
it is also referred to as the natural logarithm of the “chain-
cooperativity” parameter. By adopting a native-state configu-
ration, a monomer presents hydrogen bonding sites to its
neighbors. If those neighbors are also in their native state,
these hydrogen bonds further lower the free energy of the
system via this nearest-neighbor cooperative effect. If, how-
ever, one of the neighboring monomers of ana-helical
monomer is in its random-coil state, such hydrogen bonding
is not possible and the total free energy of this domain wall
configuration is larger than simply the free energy cost for
one monomer being in the non-native configuration,h.

Finally, we note that since there are multiple hydrogen
bonds per turn of thea-helix, it might be reasonable to de-
scribe the local secondary structure by aq-state discrete vari-
able whereq.2. Such an analysis changes Eq.s2d into an
equally tractable one-dimensionalq-state Potts model, but
introduces additional unknown parameters. It is thus incon-
sistent with our goal of exploring a minimal model that in-
corporates secondary structure.

The coupling of the secondary structure variables to the
WLC tangent vectors is affected by introducing a bending
stiffness in the WLC Hamiltonian that depends on the local
degree of secondary structure. We choose

kssd = Hk. if s= + 1,

k, if s= − 1.
J s3d

Due to the hydrogen bonding between turns of thea-helix, it
is reasonable to expect thatk., the bending modulus in the
native state, is significantly larger thank,, the bending
modulus of the chain in the non-native, disordered state. We
return to the question of determining physically reasonable
estimates of these quantities in the conclusions. By introduc-
ing Eq. s3d and combining the Hamiltonians in Eqs.s1d and
s2d we write the full Hamiltonian for the coupled system of
secondary structure variables and chain tangent vectors as
the helix-coil wormlike chain HamiltoniansHCWLCd:

H =
ew

2 o
i=0

N−1

s1 − sisi+1d −
h

2o
i=0

N

ssi − 1d

+ o
i=0

N−1

kssidf1 − st̂i · t̂i+1dg. s4d

We note that the system described by Eq.s4d may be looked
at as two intercalated Heisenbergst̂id and Isingssid magnetic
systems. The nearest-neighbor coupling of the Heisenberg
schain tangentd vector, however, depends on the value of the
Ising ssecondary structured variable between them. A picto-
rial representation of the system along these lines is shown in
Fig. 1. The full Hamiltonian given by Eq.s4d has four con-
stants with dimensions of energy,k. ,k, ,h,ew, which can be
fit from experiment. We return to this point in our conclu-
sions. Finally, we note that we have disregarded the twist
degree of freedom of the molecule. Such twist degrees of
freedom and the coupling of twisting and stretching modes
of these chiral molecules have been explored particularly
with regard to the mechanical properties of DNAf44,45g.
This extension of the basic model will be explored in future
work.

FIG. 1. Schematic figure of ana-helical polypeptide and its
schematic representation in terms of the Ising-like secondary struc-
ture variablessopen circles for random coil segments and solid ones
for a-helical onesd and the tangent vectors to the segments of the
chain sdenoted by arrowsd.
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III. MECHANICAL PROPERTIES

We now turn to the exploration of the mechanical proper-
ties of the polymer described by the HCWLC Hamiltonian.
We study this problem in different ways. First, we consider
the response of the molecule to externally applied torques by
examining the torque required in thermal equilibrium to en-
force a given angular deviation between the first and last
chain tangent vectors. Second, we study the force-extension
relations for this molecule by calculating the projection of
the chains’s mean end-to-end distance along the direction of
an applied force as a function of the magnitude of that force.
We study this extensional compliance for two different cases.
In one case we assume that the end tangents of the chain
remain unconstrained. In the second, we explore the effect of
applied torque on the extensional compliance of the mol-
ecule by first constraining the end tangents vectors and then
applying an extensional force. All these calculations are con-
ceivable as individual, single-molecule experiments through
the use of, e.g., optical and magnetic traps. By understanding
the dependence of the extensional compliance on the curva-
ture of the molecule, one may gain insight into the mechani-
cal properties ofa-helical domains of proteins that are simi-
larly constrained in the protein’s native state.

A. Bending

To consider the bending response of the chain to applied
torques in thermal equilibrium we first express the restricted
partition function of the system subject to the constraint that
the chain tangent deflects by a fixed anglec over its total arc
length. It is reasonable to suppose that the chain bends in the
plane defined by the first and last chain tangents that are
being constrained; to simplify the calculation, we assume
that we may examine the problem in this two-dimensional
subspace. In that case the chain tangents are each equivalent
to single angle,t̂i+1·t̂i →cossui+1−uid, and we write the re-
stricted partition function as

Zscd = p
j=0

N

o
sj=±1

E p
i=0

N

dui e−Hdsu0ddsuN − cd, s5d

where thed functions enforce the constraints on the initial
and final chain tangents. The Hamiltonian appearing above is
given by Eq.s4d and is a function of all the secondary struc-
ture variables and backbone tangents.

To evaluate the partition function it is useful to observe
the formal equivalence of Eq.s5d to the imaginary time
propagator of a quantum particle on the unit circlef46g. The
partition function above is an imaginary-time sliced path in-
tegral representation of the transition amplitude for the par-
ticle to start at angleu0=0 and end at angleuN=c in N time
slices. The imaginary-time evolution operator is simply the
exponentiated Hamiltonian appearing in Eq.s5d. The quan-
tum analogy is somewhat complicated by the presence of the
secondary structure variables; for the current problem, the
fictitious quantum particle has a two-level “internal” variable
similar to the spin states of a spin-1/2 particle. The state of
this particle in the angle representation takes the formus,ul
and Eq.s5d can be recast in the form

Zscd = o
s0,sN=±1

hsN
ks0,u0 = 0uTNusN,uN = cl, s6d

whereT is the single-step imaginary-time evolution operator
and hs=e−hds,−1 is a factor needed to correct the statistical
weight of finding the last chain monomer in the disordered,
non-native state. The remaining sum is over the starting and
ending secondary structures of the chain.

To make progress it is useful to work in terms of the
integral angular momentum variablesmi conjugate to the
anglesui. In this angular momentum representation of the
problem we may expand the angle eigenstates as

us,ul = usl ^
1

Î2p
o

m=−`

`

e−imuuml. s7d

In this momentum representation the time evolution operator
is diagonal; i.e., it connects states of the samem only:

kmsuTum8s8l = dm,m8S e−k.Imfk.g e−ew−k.Imfk.g
e−ew−h−k,Imfk,g e−h−k,Imfk,g

D .

s8d

To obtain the above result we have used an identity relating
the exponentiated cosine to a sum of modified Bessel func-
tions of integer orderf47g:

eJ cossud = o
m=−`

`

ImsJdeimu. s9d

The action of the transfer matrix or imaginary-time evolution
operator can be further simplified by diagonalizing it in the
remaining 232 subspace of secondary structure.

One may note that the above matrixfEq. s8dg is non-
Hermitian, reflecting the lack of time-reversal symmetry of
the underlying Hamiltonian. This absence of time-reversal
symmetry occurs because the local bending modulus be-
tween theith andsi +1dth chain tangents depends only onsi,
the secondary structure variable to theright of the first tan-
gent vector. The absence of microscopic left-right symmetry
along the chain results in the non-Hermitian character of Eq.
s8d. Minor modifications of Eq.s4d generate Hermitian
Hamiltonians expressing the same physics at length scales
larger than the monomer size, but we do not pursue such
related problems here.

The transfer matrix, Eq.s8d, can be diagonalized in the
space of secondary structure by a similarity transform using
the matrixUsmd sdefined in Appendix Ad; the eigenvalues of
the transfer matrix are

l1,2smd =
vmsk.d

2
f1 + zm ± Îs1 − zmd2 + b2zmg, s10d

where vmskd=exps−kdImskd is the transfer matrix element
for an ordinary WLC andzm=e−hvmsk,d /vmsk.d is the ratio
of the fugacities of a random-coil segment and ana-helical
segment for a given angular momentumm. The quantityb
appearing in the above expression is the exponentiated free
energy cost of introducing a domain wall in the secondary
structure, helix-coil variablesb=expflns2d−ewg with the first
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and second terms arising from, respectively, the entropic gain
and enthalpic cost of the creation of a domain wall.

It is important to note that the partition function of the
chain may not be reduced simply to the product of eigenval-
ues since doing so presupposes periodic boundary condi-
tions. While in the thermodynamic limit of long chainssN
→`d it is indeed permissible to choose those nonphysical
boundary conditions, if we wish to study the dependence of
mechanical properties on the degree of polymerization it is
essential that we avoid this simplification. Internal consis-
tency requires that we not impose such boundary conditions
on the secondary structure variables since we cannot impose
them on the chain tangents in the bent configuration. Addi-
tionally, such periodic boundary conditions will substantially
and artificially reduce the statistical weight of the appearance
of random coilss=−1d segments along the chain. The cause
of this artificial reduction is the following. With periodic
boundary conditions domain walls must appear in pairs
while in the physical problem they can appear individually
by destroying the native secondary structure from the ends of
the chain. Periodic boundary conditions therefore suppress
the probability of the creation of random-coil segments by
one extra factorb s!1 in highly cooperative chainsd.

The partition function is thus reduced to the remaining
sum given by

Z = o
s0,sN,m

ks0uUsmdDNsmdU−1smdusNlhsN
, s11d

whereDsmd=U−1smdTsmdUsmd is the diagonalized transfer
matrix and the remaining sums are over the secondary struc-
ture of the first and last monomers of the chain as well as a
single remaining angular momentum variablem. We evaluate
these final sums overs0 andsN to find

Zscd = o
m=−`

`

eicmF1 + e−h

2
fl1

Nsmd + l2
Nsmdg

+
l1

Nsmd − l2
Nsmd

2Îs1 − zmd2 + b2zm

3s1 + bzm − zm − e−hf1 − zm − bgdG . s12d

Using the above partition function we may immediately
compute two measurable quantities:sid the mean torquetscd
required to enforce the constraint on the chain tangents at
either end andsii d the fraction of molecule in its non-native
srandom-coild structureMscd. The former can be directly
measured by AFM in single-molecule manipulation experi-
ments while the latter can be probed by circular dichroism
spectroscopy. These quantities can be computed from the
partition function shown in Eq.s12d by the derivatives

tscd =
] ln Zscd

]c
s13d

and

Mscd = −
1

N

] ln Zscd
]h

. s14d

Exploiting the symmetryvmskd=v−mskd we may collect the
terms within thef·g in Eq. s12d definingf·g=Zsm,hd to write
the partition function as

Zscd = Zs0,hd + 2o
m=1

`

cosscmdZsm,hd s15d

so that, using Eqs.s13d and s14d we find

tscd =

− 2o
m=1

`

msinscmdZsm,hd

Zs0,hd + 2o
m=1

`

cosscmdZsm,hd

s16d

and

Mscd =
− 1

N

]Zs0,hd
]h

+ 2o
m=1

`

cosscmd
]Zsm,hd

]h

Zs0,hd + 2o
m=1

`

cosscmdZsm,hd

. s17d

The series above are well approximated by partial sums; in
practice, taking the first ten terms reduces the error to about
1 part in 106. These numerically evaluated partial sums are
shown in Fig. 2. At small values of the bending anglec,
there is a linear dependence of the constraining torque onc.
The a-helix bends like a flexible, elastic rod. At a certain
critical anglec!, however, the constraining torque reaches a
maximum and then drops precipitously for anglesc.c! as
shown in partsad of Fig. 2. This dramatic collapse of the
chain’s rigidity is akin to the buckling instability of a mac-

FIG. 2. sad The torquetscd required to hold the chain at a fixed
angle c for ew=1.4 ssolid lined and ew=5.2 sdashed lined with h
=8. In both casesk.=100,k,=1, andN=15. sbd The correspond-
ing number of segments having non-nativesrandom coild structure
NMscd. The buckling of thea-helix coincides with the creation of
one random-coil segment that acts as a softer joint along the very
rigid chain.
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roscopic tube such as a drinking straw. The mode of the
localized failure is, however, completely different. Examin-
ing partsbd of Fig. 2, we see that atc=c!, M abruptly jumps
to Os1/Nd. The buckling of thea-helix is due to the creation
of a single random-coil segment along the chain that pro-
vides a region of greatly reduced bending stiffness. The size
of the created random-coil section will remain on the order
of Nk, /k. so for a large difference in bending moduli be-
tween the native and non-native states of the chain, these
“weak links” generically occupy a small fraction of the poly-
mer. In the above example, there is only one weak link.

The underlying cause of the buckling can be understood
in terms of a comparison of the free energy increase per
monomer associated with the creation of non-native states
along the chain due to the reduction in chain bending energy
due to the collapse of chain curvature into the more flexible
random coil segment. At large enough imposed curvatures
sat c!d the reduction of chain bending energy more than
offsets the free energy cost associated with the creation of a
chain segment having non-native secondary structure and the
buckling of thea-helix occurs. The mean conformation of
chain changes from the arc of a circlesto minimize curvature
energyd to two essentially straight segments connected by
Os1d monomers in the random-coil state where the exter-
nally imposed curvature localizes. It should be noted that
critical anglec! for the buckling of ana-helix depends not
only on relative persistence lengths in the native and non-
native states of the chain, but also on the helix-coil param-
eters. If, for example, the chain cooperativity is decreased by
changingew=5.2→1.4 sdashed line to solid line in Fig. 2d,
then the free energy cost of creating a weak joint in the chain
is reduced and the buckling transition occurs at smaller im-
posed curvatures. One may observe similar effects through
the change inh.

The buckling transition may be considered as a type of
nucleation process of random-coil segments along the chain.
Using this analogy, we can distinguish three different types
of buckling transitions based on the length of the chain and
the chain cooperativity. For very long chains there is homo-
geneous nucleation in which the random-coil segment first
appears anywhere in the bulk of the chain—i.e., away from
the chain ends. The creation of a random-coil segment in the
bulk of the chain requires the creation of two domain walls
whereas the creation of random-coil segments at the end of
the chain requires only one. For long enough chains the
added enthalpic cost of the additional domain wall is more
than compensated by the translational entropy associated
with the placement of that random-coil segment. For shorter
chains or chains having higher cooperativity, homogeneous
nucleation is replaced by heterogenous nucleation; the
random-coil segment appears at one end of the chain. Based
on these considerations, the transition between homogeneous
and heterogeneous nucleation of random-coil segments
should occur for chains where lnN,ew. Finally, even
shorter chains or chains with still higher chain cooperativity,
one can encounter a regime in which the entire chain spon-
taneously loses its native secondary structure at a critical
angle. Such a transition should occur only ifN,ew/h. The
curves shown in Fig. 2 correspond the intermediate case of
heterogeneous nucleation of random-coil segments.

The appearance of the buckling transition is the first and
perhaps most dramatic consequence of the coupling the
helix-coil, internal-state variables of the chain to its confor-
mational degrees of freedom. The generic consequence of
such a coupling is the highly nonlinear bending elasticity of
the polymer as shown in Fig. 2. We now consider the effects
secondary structure on the force extension relations of the
polymer.

B. Stretching

Before we develop the theory of stretching the HCWLC,
we discuss the radius of gyration of such a polymerf48,49g.
To do so we note that the distance between theith and j th
monomers along the chain is given by

Rij = o
n=i

j−1

gssndt̂n, s18d

wheregssnd is the length of a monomer measured along its
mean chain tangent. Recalling that each monomer of the
HCWLC represents enough amino acidss,3d to unambigu-
ously assign a secondary structure to the segment, the effec-
tive size of the monomer depends on that secondary struc-
ture. In the native,a-helix state the monomer is shorter than
in its generally more extended random-coil configuration. To
account for this aspect of the coarse-grained polymer model
we define a monomer length that is a function of the second-
ary structure variablesn via

gssd = Hg, if s= + 1,

g. if s= − 1,
J s19d

where, as the notation suggests,g,,g., the length of a
monomer, increases when it loses itsa-helical secondary
structure. We return to a discussion of reasonable numerical
estimates of these values in the conclusions below.

1. Radius of gyration

We now compute the radius of gyration of these polymers
in solution by taking the thermal average ofR0N

2 using Eq.
s18d and the HCWLC Hamiltonian. Separating the sum into
terms diagonal and off-diagonal in the monomer indices we
write

kR0N
2 l = o

n=0

N−1

kg2ssndl + 2o
n=0

N−1

o
m=1

n

kgssndgssmdt̂n · t̂ml. s20d

Both of these terms in the above expression can be evaluated
in terms of the transfer matrices introduced in Eq.s8d. We
explore this point in some detail as it gives insight into the
bulk of the calculations regarding stretching of the HCWLC.
The reader who is uninterested in details of the calculation
can pick up the discussion involving Fig. 3 in the last two
paragraphs of this section.

We note that the firstsdiagonald term may be written in
terms of the transfer matrices as

B. CHAKRABARTI AND A. J. LEVINE PHYSICAL REVIEW E 71, 031905s2005d

031905-6



kg2sskdl = o
s0,sN,m

hsN

4p2Z
E

u0,uN

eimsuN−u0dks0,muDksmdG2DN−ksmd

3usN,ml, s21d

where both integrals range over the full unit circle. In Eq.
s21d, Z is the partition function defined in Eq.s6d and we
have also introduced the matrixG defined by

G = Sg, 0

0 g.
D . s22d

This matrix acting in the space of secondary structure assigns
the appropriate monomer length to the segment, i.e.,
k+1,muGu+1,m8l=dm,m8g, and k−1,muGu−1,m8l=dm,m8g.

while both off-diagonal terms vanish. It represents the action
of the gssd operator acting on a given state of the HCWLC,
us,ml. The transition amplitude appearing in the above equa-
tion may be interpreted again as the amplitude for the ficti-
tious quantum particle. In this case we compute the ampli-
tude to propagatek imaginary-time slices at angular
momentumm, be acted on byG2 that measures the square of
the length ofkth segment, and then propagate the remaining
N−k imaginary-time steps at the same angular momentum.
Finally, the integrals over the initial and final angles of the
chain may be performed explicitly; by not constraining these
two end tangents, we project out them=0 state of the chain
so that Eq.s21d may be simplified to

kg2sskdl = o
s0,sN

hsN

Z
ks0,m= 0uDs0dkG2Ds0dN−kusN,m= 0l.

s23d

The remaining sums over the secondary structure of the ini-
tial and final chain monomers consist of only four terms and
can be evaluated directly.

Using the similar reasoning we may write the off-diagonal
parts of Eq.s20d as

kgsskdgssjdt̂k · t̂ jl

= 2o
s0,sN

hsN

Z
ks0,0uDs0dkGDs1d j−kGDs0dN−jusN,0l,

s24d

where we have takenj .k. We observe that while the initial
and final states are fixed at zero angular momentumffor the
same reasons as in Eq.s23dg, the diagonalized transition ma-
trix acting between thekth and j th monomers is evaluated at
an angular momentum of unity. To understand this we note
that the thermal average of the scalar product in the above
equation involves the averages of products of cosines of the
form cossu jdcossukd. These cosines generatem→m±1 tran-
sitions in the angular momentum basis so that the action of
the cosine at thekth monomer takes the initialm=0 state into
either ofm= ±1 states. The action of second cosine at thej th
monomer must return the angular momentum of the state to
zero so that the integral over the initial and final angles does
not cause this contribution to the transition amplitude to van-
ish. Thus of the four possible combination ofm→m±1 act-
ing at the two sites, only the two terms leading to no net
change in angular momentum survive the final averaging.
BecauseDsmd is even inm, the factor of 2 accounts for both
of these terms. Once again the remaining sums over the sec-
ondary structure of the initial and final chain segments can
be performed directly.

The final sums overj ,k required to determine the radius
of gyration can be performed. If one were to assume trans-
lational invariance along the chain, the remaining sums over
monomers in Eq.s20d can be rewritten as a single sum

kR0N
2 l = o

k=0

N−1

sN − kdCskd, s25d

where we have defined the quantity Cskd
=kgssi+kdgssidt̂i+k·t̂il to be the tangent vector correlation
function function weighted by the length of the chain seg-
ments. Due to our momentary assumption of translational
invariance along the chain, this function is independent of
the monomer indexi. With this assumption the correlation
function simplifies to

Cskd =
1

Z
TrfGs01d ·Ds1dk · Gs10d ·Ds0dN−kg, s26d

where we have introduced the matrices

Gs01d = Us0d−1 · G ·Us1d, s27d

FIG. 3. sad The radius of gyration of the HCWLC as a function
of the free energy cost per segment to transform to the random-coil,
non-native state:h. In this curvek.=100, k,=1, N=10, andew

=10. In the lower figuresbd we plot the scattering functionPsud
computed from the radius of gyration. The dashed line corresponds
to that of a chain that is a mixture of helix and coils forh=2.1 and
ew=10. The solid line and dash-dotted lines are the scattering func-
tions computed for the molecule in the all helix and all random-coil
states, respectively.
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Gs10d = Us1d−1 · G ·Us0d, s28d

written in terms ofG defined in Eq.s19d and the matrices
Usmd that diagonalize the transfer matrix at angular momen-
tum m ssee Appendix Ad. By performing the above trace,
going to the limit of largeN, and using fact that at any given
angular momentum the helix phase is more probable than the
random coilfi.e., l1smd.l2smd for all mg, we may write the
correlation function as the sum of two exponentials:

Cskd = Ae−k,a + Be−k,b, s29d

where the two lengths controlling the exponential decay of
correlations are given in terms of the eigenvaluesfEq. s10dg
by

,a = lnSl1s0d
l1s1dD , s30d

,b = lnSl1s0d
l2s1dD . s31d

The coefficients of these two decays are written explicitly in
Appendix B.

The existence of two exponential decay lengths for the
correlation function reflects the fact that between any two
tangents along the chain, the polymer may exist in one of
two states having differing monomer lengths and thermal
persistence lengths. To better understand this result it is in-
structive to study the limit in which it is highly unlikely to
find the chain in the random coil state:ew@1 andh@1. In
that limit, l2smd→0 so that,b→`; the decay of correlations
is dominated by the length,a,1/k. in this limit. From
extensions of this reasoning one can associate,a with the
decay length of correlations for a section of polymer that
starts and ends with helical segments. Between these helical
segments this correlation length is related to some function
of both k, ,k. due to fluctuations into the coil phase. Simi-
larly, the length,b controls the decay of correlations for
segments of the chain that begin and end with random coil
segments. Once again, due to fluctuations into the helical
phase this length is a function of bothk, ,k..

Finally, given a form for the correlation functionCskd
obtained from the assumption of translational invariance
along the chain, we may directly evaluate the radius of gy-
ration. We find

kR0N
2 l =

Ae,a

se,a − 1d2fNse,a − 1d + e−N,a − 1g

+
Be,b

se,b − 1d2fNse,b − 1d + e−N,b − 1g. s32d

We suspect, however, that at least in the case of highly
cooperative or short chains for whichew@ ln N the effects of
the chain ends will be significant and thus break the assumed
translational invariance used above. In order to evaluate the
radius of gyration of the chains that strongly break transla-
tional invariance, we numerically evaluate the requisite sums
to determine the radius of gyration; these results are shown
in Fig. 3. There we see the crossover of a random coilsN

.k,d having a Kuhn length ofg.=3.0 to an essentially
straight rod of lengthg,N in the helix phase.

The radius of gyration can be experimentally probed via
small-angle elastic scattering. In Fig. 3sbd we plot the scat-
tering function for HCWLC’s in dilute solution as a function
of the scattering wave vector for scattering anglez: m
=s4p /ldsinsz /2d. In the same figure we show the predicted
scattering from WLC’s.

A comparison of the predicted scattering HCWLC’s and
the better studied WLC’s demonstrates that such scattering
experiments alone are ineffective in differentiating between
these two models. The scattering from a HCWLC can always
be interpreted in terms of the scattering from a WLC having
some effective persistence length. More generally, any mea-
sure of the radius of gyration will not distinguish the
HCWLC from a simple WLC as long as the effective persis-
tence length of the chain is adjusted to fit the data. In order to
observe qualitatively novel behavior of the HCWLC, one
must probe the force extension behavior of the chains. Here
we will see highly nonlinear elasticity mirroring the nonlin-
ear bending elasticity of these polymers.

2. Force extension relations: Small forces

In the presence of a stretching forceF the Hamiltonian of
the HCWLC may be written as

H = H0 − Fo
i=0

N

gssidcossuid, s33d

whereH0 represents the HCWLC Hamiltonian in the absence
of externally applied forces as shown in Eq.s4d. A calcula-
tion of the chain partition function based on the above
Hamiltonian would, of course, result in the complete descrip-
tion of the equilibrium force and extension relations for this
model. Unfortunately, a closed-form expression for this par-
tition function is not possible sinceH0 and the term propor-
tional to the applied force are diagonalizable in the momen-
tum and position representations, respectively. The basis
states that diagonalize the full Hamiltonian, Eq.s33d, are the
energy eigenstates of the quantum pendulum. We do not pur-
sue this approach here. The identical issue arose for the study
of the stretched WLC; there approximate numerical diago-
nalizationf36g and variational calculationsf27,36g have been
successfully employed.

We begin by considering small externally applied forces
and consequently small chain extensionsDL. Defining Dg
=g.−g, to be the extension of a monomer under the helix-
to-coil transition, we consider the small force to be those for
which FDg is small in comparison to the other four energy
scales in the problem. Using this assumption, it becomes
reasonable to expand the chain free energy in powers of the
externally applied force. We thus generate a cumulant expan-
sion

ln Zscd = o
l=0

`
cl

l!
Fl s34d

that is similar in spirit to those obtained from high-
temperature expansions of the Ising modelf50g. In the above
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equationcl is the lth-order cumulant. These cumulants are
thermally averaged quantities in which the averaging is per-
formed with respect to the zero applied force Hamiltonian,
H0. Calculating the derivatives of Eq.s34d evaluated atF
=0 allows one to calculate the mean extension of the chain in
the direction of the applied force in powers ofF. Finally, we
note that since the remaining thermal averages are to be per-
formed with respect toH0, we may borrow the formalism
used to compute the torque and angle curves and consider
averages over restricted ensembles in which the first chain

tangent is directed alongFW staken to be in thex̂ directiond
while the last chain tangent is fixed at an anglec. We can
thereby explore the coupling of applied torques to the exten-
sional compliance of the chain using this formalism.

Taking the first cumulant, which is the term linear in the
force, we calculate the mean length of the polymer chain in
the absenceof any applied force:

kLlscd =Ko
k=0

N

gsskdcosukL
c

, s35d

where the averagek·lc is taken over the force-free, restricted
ensemble of chains having an initial tangent in thex̂ direc-
tion and a final tangent making an anglec with respect to
that initial tangent. The restriction placed on the first tangent
breaks the rotational symmetry of the system, leading to a
nonvanishing value ofkLlscd.

Based on our discussion of the radius of gyration of the
chain, we can compute these mean extension at zero force
using the transfer matrix technique; Eq.s35d may be written
as

kLl = o
k=0

N

o
s0,sN

ks0,u0 = 0uT kgsskdcosukT
N−kusN,clhsN

.

s36d

Working, once again, in the momentum representation we
can recast the above expression into a simple sum over one
angular momentum variable and the four possible combina-
tions of secondary structure states of the initial and final
chain segments:

kLlscd = o
k=0

N−1

o
s0,sN

hsNFks0,0uT kGTN−kusN,1lcosscd

+ 2o
m=1

`

ks0,muT kGTN−kusN,m+ 1lcossfm+ 1gcdG .

s37d

The structure of the above expression may be characterized
by using a simple graphical representation. In the left panel
of Fig. 4, we represent the above terms for the first cumulant
sthe mean length of the chaind as the set of all one-step
random walks in angular momentum space. As noted above
in the computation of the radius of gyration, each factor of
cosine increments or decrements the angular momentum. In
general thenth-order cumulant requires the determination of
the thermal average of the product ofn such cosines along

the chain contour:kcosui1
cosui2

¯cosuin
l. There is a one-

to-one mapping of such products to the set of alln-step ran-
dom walks in momentum space. For example, the right-hand
panel of Fig. 4 shows all two-step random walks. That set of
random walks in the momentum space sums to give the lin-
ear response of the mean length of the chain to the externally
applied forceF.

By expanding about zero applied force we may obtain an
expression for the series expansion of the mean length as a
function of applied force of the form

kLlsF,cd = L0scd + L1scdF + L2scdF2 + ¯ , s38d

where the prefactors of the odd-index terms—i.e.,
L2n+1scdF2n+1—vanish upon averaging over all end anglesc.
Each term in the above expansion is the set of alln-step
random walks in momentum space. Each involves a sum
over the states of secondary structure at each end of the
chain, which may be performed exactly, and one infinite over
a single angular momentum variable. The latter sum cannot
in general be performed exactly, but as discussed above, it
may be numerically approximated to arbitrary precision. In
practice because of the rapid convergence of this sum with
high m, only a few terms are required to generate an excel-
lent approximation.

FIG. 4. Diagrammatic expansion used to calculate the extension
of the chain order by order in the externally applied force. The
combination of two terms on the left give theOsFd terms that
determine the mean length of the chain at zero applied force. The
four terms on the right give the linear response of the mean length
due to an externally applied force. In both figures the angular mo-
mentum increases in the vertical direction and each horizontal leg
of the walks represent products of the transfer matrices at the la-
beled angular momentum. The labels 0 andN denote the beginning
and end of each chain, respectively. The labeled intermediate sitesk
and j denote the monomers where the cosines act to either increase
or decrease the angular momentum of the walk by one unit. Mirror
reflections of each diagram about the dotted line has the same con-
tribution to the sum.
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Constraining the initial and final chain tangents causes
each walk in momentum space to be weighted by a phase
factor expsiDmcd. Thermal averages over the ensemble of
chains having unconstrained final tangents can be computed
by averaging over c. Due to the aforementioned
c-dependent phase factor, this averaging eliminates all
walks, which results in a net change in the angular momen-
tum of the chain. For instance, the two walks comprising the
mean length of the chain at zero forcesleft panel of Fig. 4d
both vanish when the final angle is unconstrained. This is to
be expected from basic symmetry considerations. By relax-
ing that constraint, one restores the rotational symmetry of
the problem so that the mean extension of the polymer along
the x̂ axis necessarily vanishes in the limit of zero applied
force.

Since the transfer matrix is even with respect to angular
momentum, there is an additional reflection symmetry; each
walk from m to m8 makes an identical contribution to the
final result as that walk reflected aboutm=0—i.e., the walk
from −m to −m8 in which each increment of angular momen-
tum is replaced by a decrement and visa versa. We employ
this additional symmetry of the problem to rewrite the set of
two random walks comprising the mean length as shown in
Eq. s37d.

We plot in Fig. 5 the mean length of the chain as a func-
tion of h, the excess free energy per unit length associated
with the existence of nonnative secondary structure. Ifh
,1, we expect the chain to be driven into a random-coil,
non-native structure in order to increase the chain conforma-
tional entropy associated with the disordering of the polymer
backbone tangent vectors. For values ofhù1 we expect a
highly cooperativesew. ln N in this example systemd and
therefore sharp transition to thea-helical, native state. This
transition is evidenced by the precipitous decrease of the
chain’s extension occurring ath.1.

Using the formalism described above we may also com-
pute the linear andnonlinearresponse of the chain to a force
F by considering longer walks in momentum space. We re-
port those results as a function of bothF andc, the angle of
final chain tangent. It is likely that in future single-molecule

force spectroscopy experiments it will be problematic to si-
multaneously control both the applied force and final chain
tangent. While we suspect that force spectroscopy with un-
constrained angles will be more experimentally relevant, we
believe that in order to discussa-helical domain extensional
elasticity within the native state of a protein, such boundary
condition prescriptions may prove necessary. We plot in Fig.
6 the nonlinear force and extension behaviorsincluding
terms up toF2d of two representative HCWLC’s for a variety
of angular bends,c. Higher-order terms in the applied force
can be computed similarly. For the case of unconstrained
initial and final tangents, we have developed an automated
procedure to calculate terms of the perturbation expansion to
arbitrary orderf51g.

In Fig. 6sad we observe the nonlinear extensional compli-
ancesthrough terms of orderF2d of the HCWLC for the case
that chain is much shorter than its thermal persistence length.
The different symbols correspond to differing imposed cur-
vatures on the chain—see the caption. The finite extension at
zero force is consistent with the assumption that the chains
are simply bent into the arc of a circle consistent with uni-
form distribution of chain curvature as required to minimize
chain bending energy. By noting the difference in slopes of
the three extension versus force curves in Fig. 6sad, one sees
that the extensional compliance of the chain in the direction
parallel to the applied force depends on the angle of the final
chain tangent,c. In part sbd of this figure we observe the
predicted force extension relations to the same order in the
low-force perturbation theory for the HCWLC’s where the

FIG. 5. Mean length of the HCWLC in thermal equilibrium as a
function of the parameterh, the free energy cost per segment to
transform to the random-coil, non-native state. The bending modu-
lus of the coil sectionk,=10, k.=100 and the length of the helix
sectiong,=1 for this plot. The polymerization index of the chain is
N=10. The initial and final chain tangents are fixed so thatu0=uN

=0. As h increases we see the effect of the HC transition on the
mean length of this stiff chain.

FIG. 6. The mean length vs applied force for HCWLC’s with
constrained end tangents so thatu0=0 anduN=c. In both figures
three different final angles are shown:c=0 scirclesd, c=p /6 stri-
anglesd, and c=p /4 ssquaresd. In sad, k.=100, k,=1, ew=10, h
=3.0, N=10, g.=3, g,=1. In sbd, k.=5, k,=1, ew=10, h=1.5,
N=24. The upper figure shows the expected behavior of an
a-helical polypeptide chain. For comparison, a longer HCWLC of
shorter persistence lengths is shown insbd.
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persistence length is less thanL even in the stiffer,a-helical
phase. As evidenced by the equality of the slopes of all three
figures, the effect of imposed curvature on the subsequent
extensional compliance of this chain is minimal. For a more
flexible chain twisting the final tangent has little effect on the
compliance under subsequent extension. We expect the upper
panel of Fig. 6 to better reflect the mechanical ofa-helical
polypeptides.

The perturbation theory presented above appears to be a
useful approach to the study of small extensional deforma-
tions of a-helical protein domains. A generic feature of this
model is the nonlinear growth of the effective extensional
compliance of the chain with increasing applied force. The
underlying mechanism must be the enhanced statistical
weight for finding a segment in its longer non-native state.
The applied force thereby accesses a reservoir of chain
length built into each segment; such a mechanism has been
studied in detail by Tamashiro and Pincusf43g. The tangent
vector fluctuations in our model should enhance the nonlin-
ear growth of the effective chain compliance. Whenk,

!k. the random coil sections of the chain recover a signifi-
cant entropic contribution to their free energy. The chain as it
extends into the random-coil phase not only becomes physi-
cally longer, but also has a decreasing effective persistence
length. The combination of these two factors enhance the
effective compliance of the chain.

The perturbatively evaluated HCWLC model, however,
fails to reproduce the central aspect of the high-force limit.
In order to capture this basic feature of the WLC that must
also hold for the HCWLC, we must augment our low-force
perturbation theory by other methods better adapted to the
high-force limit. Since one may compute thenth cumulant,
which generates thesn−1dth term of the series expansion of
the force-extension curve as shown in Eq.s38d, one might at
first imagine that one could perturbatively determine the
force-extension relation of the HCWLC at arbitrarily large
forces. This is not the case. In fact, the perturbative approach
to the high-force limit is incapable of capturing the essential
aspects of the behavior of the WLC or the more complex
HCWLC. The high-force limitF→` is an essential singu-
larity of the partition function and thus cannot be approxi-
mately by a Laurent series in force. This has been directly
confirmed by Marko and Siggiaf36g who have shown by
integrating out the transverse contour fluctuations of the
WLC in the high-force limit that the mean length approaches
the maximal lengthL as kLl /L,1−F−1/2. Perturbation
theory in the low-force limitsexpansions inFd or in the
high-force limit sexpansions in 1/Fd will miss this result.

3. High-force limit: Mean-field theory

We now study the extensional compliance of the HCWLC
in the high-force limit. In order to explore the approach un-
der high forces of the mean chain extension to its maximal
extensionL=g.N, it is reasonable to assume that the tangent
vector fluctuations become small so that a Gaussian approxi-
mation is justified. We may approximate the HCWLC Hamil-
tonian, Eqs.s4d and s33d, by

H =
ew

2 o
i=0

N−1

s1 − sisi+1d −
h

2o
i=0

N

ssi − 1d + o
i=0

N−1
kssid

2
fui+1 − uig2

− Fo
i=0

N

gssidF1 −
u i

2

2
G . s39d

The above Hamiltonian is now quadratic in the angles of the
chain tangent vectors. We fix the initial and final chain tan-
gents to lie along the direction of the applied force,u0=uN
=0. By iterative Gaussian integrals over the remaining
angles we determine an effective partition function that is
now a sum over only the secondary structure degrees of free-
dom. After integrating overu1, . . . ,uN−1 the partition func-
tion in the high-force limit reduces to the form

Z = o
hsij

expF ew

2 o
k=0

N−1

s1 − sksk+1d

−
h

2o
k=0

N

ssk − 1d − Fo
k=0

N

gsskdGJfhsijg, s40d

where the remaining sum is over all 2N configurations of the
secondary structure variables. We have introduced the quan-
tity Jfhsij ,Ng produced by the Gaussian integrals. It is a func-
tion of that secondary structure configuration defined by

Jfhsij,Ng = p
j=1

N Î 2p

2Rj + kssjd
e−gss0dF. s41d

Each termRi in the above product is defined recursively by
the equation

Ri =
kssi−1dRi−1

2Ri−1 + kssi−1d
+

Fgssid
2

s42d

for i =2, . . . ,N, where we fix the initial condition for the
recursion by setting

R1 =
kss0d + Fgss1d

2
. s43d

The ith term in the product depends on the full set of sec-
ondary structure variables from sitei −1 back to 0. Similar
recursion relations having a constant value ofk and g are
discussed by Lamuraet al. f38g.

Examining Eq.s40d we see that by integrating out the
tangent vector degrees of freedom we have taken the Ising-
model partition function corresponding to the secondary
structure variables, which had only nearest-neighbor cou-
plings, and transformed it into the partition function for the
secondary structure variablesssid having interactions be-
tween these variables at distant sites along the polymer
chain. This result is to be expected: the combination of the
coupling between the local chain tangents and secondary
structure generated bykssd combined with the long-range
coupling of those chain tangents to each other over,k
monomers leads to a new effective long-range interaction
between secondary structure variables mediated by the con-
formational degrees of freedom of the chain. It is clear from
Eqs. s41d–s43d that the simple Ising description of the sec-
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ondary structure variables is recovered in limit of chains with
a vanishing persistence lengthk→0 where the tangent vec-
tor degrees of freedom do not mediate a long-range interac-
tion between thesi variables. In that case the recursion rela-
tion can be trivially solved to yieldRi =Fgssid /2 so that the
remaining partition function of the secondary structure vari-
ables in Eq.s40d reverts to that of an Ising model, but one for
which each secondary structure configuration is weighted by
its effect on the chain extension in the direction along the
externally applied force.

The short-persistence-length, decoupled limit is clearly
not of primary interest in modelling ana-helical polypeptide.
In fact, considering that we are primarily interested in mol-
ecules that are not significantly longer than their persistence
length sin the a-helical phased, it appears physically reason-
able to take a diametrically opposed approximation. For such
chains wherek.,N one suspects that the statistics of the
secondary structure variables is better represented in a mean-
field approximation enforced by the long-range interactions
between these variables due to tangent vector correlations
along the chain. To implement a mean-field approach, we
ignore boundary effects and study one secondary structure
variable in the bulk of the chain,si. This single degree of
freedom interacts with the mean field of all the other second-
ary structure variables along the chain. We define the mean
value of these variables asm=ksjl, for all j Þ i. From this
definition it is clear that −1,m,1. In order to discuss the
chain persistence length and effective monomer length we
must generalize Eqs.s3d ands19d, respectively, by introduc-
ing the mean values of these quantities by defining

k̄ =
k.

2
s1 + md +

k,

2
s1 − md, s44d

ḡ =
g.

2
s1 − md +

g,

2
s1 + md. s45d

The linear dependence of these values onm may be justified
by noting thatksjl=m implies that each segment spends a
fraction sm+1d /2 of the time in its native state. At least on
time scales long compared to interconversion time between
the sj = ±1 states, one would observe the effective valuesk̄
and ḡ as defined above. Of course, nothing in the present
analysis determines this interconversion time, but we expect
it to be on the time of conformational changes of small mol-
ecules,10−9 s. Both force spectroscopy measurements and
protein conformational changes occur on much longer time
scales where the approximation Eqs.s44d and s45d is valid.

We may write the mean-field free energy of the chain
under the externally applied force in the form

FMF = − lnH o
si=±1

e−sew/2dsmsi−1d+sh/2dssi−1d+Fgssid

3JMFfk̄,ḡ,m;N/2 − 1gJfsi,1gJMFfk̄,ḡ,m;N/2 − 1gJ .

s46d

We have defined quantityJMFfk ,g ,m;Ng to be analogous to
JfhSij ,Ng fsee Eq.s40dg for a chain ofN monomers with a

fixedmean-field persistence lengthsk̄d and afixedmean-field
monomer lengthsḡd. We also take the mean-field approxima-
tion sk=m for all k in the HC part of the Hamiltonian. The
function Jfsi ,1g represents the one Gaussian integral associ-
ated with angular degree of freedom at theith site.

The physical meaning of Eq.s46d is that the free energy
of the chain in the mean-field description may be written as
the sum of three parts. The first part given by the negative
logarithm of JMFfk̄ ,ḡ ,m;N/2−1g gives the free energy of
the half of the chain to the left of the selected sitei. This free
energy is evaluated using the mean-field approximation for
the secondary structure variables and the Gaussianssmall-
angled approximation for the tangent vectors. The last term in
the sum is the analogous contribution to the free energy as-
sociated with the length of polymer to the right of the se-
lected sitei and evaluated using the same approximations.
Finally, the middle term in the product appearing in Eq.s46d
is the contribution to the free energy of theith site itself. The
sGaussiand integral Jfsi ,1g accounts for the tangent vector
degree of freedom while the sum on one remainingsi vari-
able is written explicitly above.

To justify choosing theith site at the middle of the chain
to be representative of any site, we must ignore boundary
effects. Consequently the mean-field description is most ac-
curate in the limit of long chains—i.e., lnN.ew. Finally,
self-consistency requires that the thermal average of the sec-
ondary structure at theith also be equal tom. Thus we de-
mand

m= ksil = 2
]FMF

]h
. s47d

From Eq.s47d we obtain a solution for that, when used in
conjunction with the mean-field free energy functionFMF=
−ln JMFfk̄ ,ḡ ,m;Ng, gives a complete thermodynamic de-
scription of the chain under an externally applied force. In
particular we compute the mean length of the chain under
these conditions from

kLl = −
]FMF

]F
. s48d

We plot the mean extension of the polymerkLl in the
direction of the applied force normalized by the maximal
extension of the chainL=Ng. in Fig. 7. The applied force
has been nondimensionalized by the lengthg,. Qualitatively
the figure may be discussed in terms of four regimes charac-
terized by abrupt changes in the dependence of the mean
length on applied force. For the smallest forces we see the
initial extension of the predominant native-state,a-helical
chain. As long as theh.FDg the free energy decrease as-
sociated with the breakdown of the native state of molecule
and the consequent extension of each monomer byDg=g.

−g, is more than offset by the free energy increase per unit
length of creating segments in this nonnative state,h. Thus
the secondary structure variables are frozen in the native
state and the extension of the chain proceeds by the suppres-
sion of contour fluctuations transverse to the extension direc-
tion. The effective maximal extension of the chain is
Lg, /g. shere L /3d and the saturation of chain extension
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reproduces the Marko, Siggiaf36g result so thatkLl /L,f1
−sFk.g,d−1/2gNg, /g..

If the system were well described by a WLC model, this
high-force plateau would be flat as the chain extension as-
ymptotically approached its maximal value. The observed
slow growth of the chain extension or “pseudoplateau” is due
to the presence of local secondary structure fluctuations.
With increasing force, these fluctuations are biased toward
the more-extended, non-native state so that the mean length
of a monomer grows slowly with applied force. This second
regime characterized by the pseudoplateau terminates in a
rapid extension regime where the secondary structure is
pulled apart by the applied force. The requisite force to open
up thesea-helices determines the transition to this rapid ex-
tension regime. That force is given byFDg,ew+h where
the net extension of one segment enthalpically compensates
for the creation of a random coil segment and a domain wall
on the chain. Finally, in the fourth regime, the applied force
has thoroughly destroyed the secondary structure. With in-
creasing the force the now random-coil chain approaches its
maximal extensionL in a manner first discussed by Marko
and Siggia.

IV. CONCLUSIONS

We have proposed and explored an extension of the tra-
ditional WLC polymer model in order to incorporate the
presence of internal degrees of freedom along the polymer
backbone and the coupling of those internal degrees of free-
dom to the conformational degrees of freedom of the chain.
Such a model constitutes a minimal description of many
biopolymer systems, but we focus on developing a descrip-
tion of ana-helical polypeptide chain. By studying the me-
chanical properties in thermal equilibrium of such polymers
one will develop insight into the mechanical properties ofde
novo designeda-helical chains and biomemtic synthetic
polymers that acquire helical secondary structure in aqueous
solution.

Eventually one would like to apply such a model to entire
proteins although such a program requires in general a me-
chanical description ofb-sheets and an investigation of the
mechanical interaction of protein subdomains. In principle,
the combination of a model of the nonlinear elastic proper-
ties of such domains with an accurate three-dimensional pro-
tein structure in its native state should enable the investiga-
tion of protein dynamics and particularly conformation
change under biologically relevant conditions. It is known
that at least some proteins are bistable having at least two
structurally different conformations. In this paper we have
shown that, due to the coupling of the conformational de-
grees of freedom to the internal, secondary structure vari-
ables,a-helices are generically bistable mechanically. One
may speculate as to whether this inherent bistability provides
a mesoscopic mechanism to elucidate protein conformational
change.

In order to carry forward this program and to make quan-
titatively falsifiable predictions for the mechanical properties
of single a-helices it is necessary to determine the energy
scales that enter the HCWLC Hamiltonian. Unfortunately,
these four energy scales are imprecisely known at best. The
better studied energy scales involve the helix-coil parameters
ew andh. Both of these parameters are extremely difficult to
estimate based on first principles since these energy scales
involve complex solvation energiesf52g in addition to the
formation of hydrogen bonds between adjacent turns of the
a-helix. These parameters can be estimated, however, by fit-
ting HC models to both the results of molecular dynamics
simulations and experimentf53,54g. In terms of our param-
eters this work provides the following estimates:ew.7 and
h.1.5. Thus we note that since typicala-helix domains in
proteins haveN,Os10d f55,56g, these domains are highly
cooperative,ew. lnsNd.

There are little data on the persistence length ofa-helices.
We estimate the bending modulus of ana-helix by assuming
that its enhanced stiffness arises primarily from interloop hy-
drogen bonding. Taking the energy scale of these hydrogen
bonds to be 3kBT–15kBT f57g, an interloop distance of
0.36 nm, and helical radius,0.1 nm we find thatswith
kBT=1d the persistence length of thea-helix should be,p

h

,10–50 nm. From this persistence length we determine the
HCWLC bending modulus via,p

h/g,=k. so that k.

,25–140. With the absence of hydrogen bonding in the
non-native, random-coil state we assume that the persistence
length is ,p

c,1 nm, typical of simple hydrocarbonsf58g.
Thus it is reasonable to suppose that,p

c /g.=k,,3. There is
a significant dependence of the thermal persistence length
upon the local secondary structure: the ratiok. /k, may be
as large as 50. In order to explore the phenomenology of the
model we have shown results for various parameter values,
but we have always included plots corresponding to these
biologically relevant parameters mentioned above. From
these estimates of the biologically relevant energy scales in
the model we predict the critical torques for the buckling
failure of the alpha helix to be,40 pN nm. The force re-
quired to pull out thea-helices leading to the dramatic
lengthening of the chain is roughly 150–200 pN.

The central result of this paper is that ana-helical
polypeptide is highly nonlinear in its response to applied

FIG. 7. The mean length of the chain as a function of the ap-
plied force normalized by the maximum lengthL computed using
the mean-field approximation discussed in the text. The parameters
for the solid line atew=10, h=1, k.=2, k,=1, andN=10. The
dashed line shows an analogous plot using parameter values ofh
=1.5,ew=8, k.=100, andk,=1. These latter values are represen-
tative of a-helical protein domains.
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forces and torques. The source of the nonlinearity is the cou-
pling between local secondary structure and the conforma-
tional state of the polypeptide backbone. Bending or pulling
on thea-helix mechanically can result in the abrupt break-
down of secondary structure and consequently a dramatic
increase in bending and extensional compliance. The stresses
required to access this highly nonlinear behavior occur on
scales relevant to biological activity.
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APPENDIX A: DIAGONALIZATION OF THE
TRANSFER MATRIX

The transfer matrix at a given angular momentumTsmd
given in Eq.s8d is diagonalized by the similarity transforma-
tion Dsmd=U−1smd ·Tsmd ·Usmd where the matrixUsmd is

Usmd = 1l1smd − 2dm

2cm

l2smd − 2dm

2cm

1 1
2 , sA1d

where l1,2smd are the eigenvalues of the transfer matrix
given in Eq.s10d and the functionscm anddm are simply the
bottom row of the transfer matrix. In other words,

cm = e−h−ew−k,Imfk,g sA2d

and

dm = e−h−k,Imfk,g. sA3d

APPENDIX B: CORRELATION FUNCTION
COEFFICIENTS

Here we discuss the coefficientsA andB appearing in Eq.
s29d. These coefficients, which have dimensions of length
squared, can be computed in terms of the matricesGs01d and
Gs10d defined in Eqs.s27d ands28d; by calculating the neces-
sary trace, one finds that

A = G11
s01dG11

s10d, sB1d

B = G12
s01dG21

s10d. sB2d

Determining these coefficients in terms of the fundamental
parameters of the model is now a matter of some algebra. To
simplify this work and to better display the result, we find it
helpful to write A and B in terms of gk,l and the transfer
matrix eigenvaluesl1,2smd given by Eq.s10d. We find

A =
4c0c1g. − g,f2d1 − l1s1dgf2d0 − l2s0dg

4c0
2 − f2d0 − l1s0dgf2d0 − l2s0dg

4c0c1g. − g,f2d0 − l1s0dgf2d1 − l2s1dg
4c1

2 − f2d1 − l1s1dgf2d1 − l2s1dg
sB3d

and

B =
4c1g,f2d0 − l2s0dg + c0g.f− 2d1 + l2s1dg

4c0
2 − f2d0 − l1s0dgf2d0 − l2s0dg

c1g,f− 2d0 + l1s0dg + c0g.f2d1 − l1s1dg
4c1

2 − f2d1 − l1s1dgf2d1 − l2s1dg
. sB4d

In the above equations we have used the functions defined in Eqs.sA2d and sA3d.
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